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Abstract— Object-based maps are relevant for scene under-
standing since they integrate geometric and semantic informa-
tion of the environment, allowing autonomous robots to robustly
localize and interact with on objects. In this paper, we address
the task of constructing a metric-semantic map for the purpose
of long-term object-based localization. We exploit 3D object de-
tections from monocular RGB frames for both, the object-based
map construction, and for globally localizing in the constructed
map. To tailor the approach to a target environment, we propose
an efficient way of generating 3D annotations to finetune the 3D
object detection model. We evaluate our map construction in
an office building, and test our long-term localization approach
on challenging sequences recorded in the same environment
over nine months. The experiments suggest that our approach
is suitable for constructing metric-semantic maps, and that our
localization approach is robust to long-term changes. Both, the
mapping algorithm and the localization pipeline can run online
on an onboard computer. We release an open-source C++/ROS
implementation of our approach.

I. INTRODUCTION

Localization and map construction are essential capabil-

ities for mobile autonomous systems. Object-based maps,

coupled with semantically-augmented localization are the

foundation for more complex robotics tasks such as nav-

igation and manipulation, as well as AR/VR applications.

They enable to estimate the 3D geometry of the environment,

and enrich it with semantic information. We focus on the

metric-semantic map construction coupled with long-term

object-based localization, using only monocular RGB frames

and a floor plan prior. We use RGB cameras instead of

RGB-D due to their lower power consumption and bandwidth

requirements. For both tasks, we are interested in approaches

that operate online on a mobile platform.

Previous works on 3D mapping leverage 3D reconstruction

techniques to create a geometric description of the environ-

ment [20] [21]. In recent years, the progress in semantic

segmentation and object detection enabled the integration of

semantic information into 3D reconstruction [8] [12] [26].

Some works have put emphasis on highly-accurate and

detailed reconstruction of the environment [15] [28]. Other

approaches use 3D bounding boxes as a valuable and com-

pact abstraction for objects [14] [35]. Here, we leverage 3D

object detection for enriching a floor plan map with metric-

semantic information suitable for long-term object-based
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Fig. 1: A 3D semantic metric map combining a floor plan with
3D object bounding boxes built using our approach. This map is
used for long-term localization in dynamic indoor environments.
Different box colors indicate different object classes.

localization. Floor plan maps are commonly available and

store information about unchanging structures, such as walls.

Localization in floor plan maps is challenging due to the

sparsity of geometric information; its advantage, however, is

that information stored in floor plans rarely change. Often,

additional sources of information are used to support robust

localization, such as textual cues [38] and WiFi signals [10].

3D object-based maps can be used to improve long-term

localization in floor plan maps. Works such as the ones by

Li et al. [14] [15] allow the construction of object-based

maps from monocular RGB frames, but they do not include

static structural elements such as walls, which have a critical

importance for localization and planning tasks.

The main contribution of this paper is a global localiza-

tion and object-based mapping system using 3D semantic

information suitable for long-term operations in dynamic

environments. We address the difficulty of creating 2D and

3D labels by proposing an efficient method for label gener-

ation from RGB frames. These labels can then be exploited

to achieve accurate performance on the target environment

by finetuning off-the-shelf detection models. We analyze

the performance of our detector, creating a probabilistic

detection model that benefits both, map creation and object-

based global localization. We utilize 3D object detection to

construct object-centric maps, as seen in Fig. 1, augmenting

readily-available floor plan maps with semantic information.

We provide a global localization system for the pre-built

object-based map with an uncertainty-aware sensor model for

3D object information, relying solely on monocular cameras.

In sum, our approach is able to (i) generate 3D labels for

fine-tuning of 3D object detection models, (ii) enrich floor

plans with object information, (iii) and localize in such maps

in an online fashion, using onboard computers. These claims

are backed up by the paper and our experimental evaluation.



II. RELATED WORK

A. 3D Object Detection

Scene understanding is the ability of recognizing ob-

jects and obtaining a semantic interpretation of the sur-

rounding environment. In the last years, deep learning en-

abled tremendous advancements in image-based object de-

tection [7] [25], semantic segmentation [29], and panoptic

segmentation [3] [11] [31]. In the 3D domain, object de-

tection approaches aimed to reproduce the efforts of 2D

object detection in 3D [30] [33]. Most approaches, however,

took alternative paths. Qi et al. [22] propose an end-to-

end 3D object detection network inspired by the generalized

Hough voting. The authors also propose an extension fusing

2D and 3D voting for boosting 3D object detection [23].

Recent efforts in 3D object detection tackle the problem by

processing more than one frame at a time [14] [34], since

performances of single-view approaches [15] are degraded

by the depth-scale ambiguity [14]. Recently, Brazil et al. [2]

proposed a single-view approach, called Cube R-CNN, that

achieves state-of-the-art results for 3D object detection and

solves the depth-scale ambiguity by introducing a training

objective that incorporates a virtual depth.

B. Semantic Mapping

Map construction is a crucial elements of most robotics

applications, and object-based maps are a step further to-

wards higher level scene understanding. In recent years,

learning-based approaches were applied to 3D object-based

map construction. Many works were aimed at object-aware

mapping [8] [12] or simultaneous localization and mapping

(SLAM) [16] [32] with RGB-D cameras. In this paper, we

focus on object-based mapping with known poses using

monocular RGB images. For this task, Li et al. [14] use

a graph neural network for data association and a super-

quadratic formulation for their multi-view optimization. Li

et al. [15] use Bayesian filtering to track objects and the

Hungarian algorithm for data association. They perform a

coarse-to-fine reconstruction, first representing the objects

only as localized bounding boxes, and using shape codes

for a detailed reconstruction. A similar approach is the

one introduced by Runz et al. [28], that uses instead ray

clustering for data association.

C. Semantic Localization

Long-term global localization in changing environments is

a challenging task. Researchers investigated different sources

of information such as textual cues [4] [38], wifi signal

strength [18], and semantic cues to support pose estima-

tion. Rottmann et al. [27] use a semantically-labeled occu-

pancy grid map to localize in a Monte Carlo Localization

(MCL) [5] framework, preforming place classification from

RGB frames. Mendez et al. [17] extract semantic information

about structural elements (walls, windows, doors) from floor

plans, classify the pixels of an RGB-D image and match it

against the semantic floor plan to localize. Both approaches

do not use an explicit object-based map. Atanasov et al. [1]

use objects as landmarks, defined by their 3D pose, semantic
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Fig. 2: An overview of our approach. Top row: offline pre-
computation to adapt the approach to a specific environment.
Bottom row: 3D-from-2D object detection and mapping, that can
be executed on demand when the environment undergoes structural
changes and a map update is necessary.

class and possible shape priors. The object are detected using

a deformable part model [6], and the semantic information is

integrated into a MCL framework. Ranganathan et al. [24]

suggest a different representation for a semantic map, by

using a constellation model. They detect objects using hand-

crafted features, and rely on depth information provided by

stereo cameras. Yi et al. [36] localize using a topological

graph, where each node is characterized by the semantic

objects in its vicinity. Similarly to these approaches, we

incorporate the prediction uncertainty into our localization

approach and use sparse object-based maps. We provide a

pipeline for aquiring the metric semantic map. Most other

approaches use 2D object detection, while we utilize 3D

object information. Zimmerman et al. [37] incorporate high

and low-level semantic cues from 2D object detection and

geometric information from 2D LiDAR scanners, but use

manual map creation. In contrast to this, our approach does

not require LiDAR input.

III. OUR APPROACH

We aim to enhance sparse floor plans with semantic

cues and globally localize in these object-based maps us-

ing monocular cameras. In Sec. III-A, we present a way

of creating 3D labels for fine-tuning 3D object detection

models. Using such labels, we show how to fine-tune an

object detection model and learn a noise model, see Sec. III-

B, and use it to build a probabilistic object-based map. We

construct a standard metric-semantic map using 3D object

detections on posed RGB images, detailed in Sec. III-C.

We exploit the object-based maps for object-based global

localization, as described in Sec. III-D. An overview of our

approach is visualized in Fig. 2.

A. Label Generation for 3D Object Detection

The performance of off-the-shelf 3D object detection

models are often not accurate enough for the purpose of

map building and they possibly focus on classes that are

not beneficial for the purpose of indoor localization. For

this reason, mapping and localization systems might need

to finetune an existing model to the environment of interest.

3D object detection from RGB images requires 3D bounding



GT objects 2D object detection 3D annotations

Fig. 3: 2D object detection to create better 3D annotations. Top:
when rendering the ground truth objects from the camera, we have
no information about dynamic objects like closed doors, which
results in wrong annotations. The 2D object detection detects a
door, and none of the objects in the 3D map. Therefore, no 3D
annotations are generated (faded colors). Bottom: the 2D object
detection detects tables and boards, but not the drawers due to
occlusion. Therefore 3D annotations are generated only for the
boards and the tables.

boxes annotations that include the object dimension, rotation

and translation relative to the camera frame, in addition to 2D

bounding box annotation for the RGB image with semantic

category. Often, truncation and visibility of objects are also

needed. Truncation refers to the percentage of the object in

the camera frustum, while visibility is a measure of occlusion

of an object by other object in the scene. Providing accurate

labels in a real-world environment is challenging. In our

approach, we construct the 3D labels based on a 3D model

of the environment extracted from a 3D scan, 2D object

detector and posed RGB images. As a pre-processing step,

we manually annotate the 3D model of the environment with

3D bounding boxes of objects of interest. We project the 3D

bounding boxes onto the posed camera frame using

x = K

[

R t

0 1

]

X, (1)

where X = (x, y, z, 1)> is a 3D point in the world coordinate

system in homogenous coordinates, K ∈ R
3×3 is the camera

calibration matrix, R and t are the camera rotation matrix

and translation vector, and x is a point in the image plane

in homogenous coordinates. We then determine the visibility

and truncation for every annotated object. To determine if an

object is occluded by a dynamic obstacle, such as a person

or a closed door, or by a static obstacle that is not annotated,

we use a 2D object detector, as seen in Fig. 3. The detector

is trained on classes of interest including dynamics and is

made available by Zimmerman et al. [37]. For every object

detected using the 2D object detector, we match a previously-

annotated 3D bounding box based on the semantic class and

the IoU between the projected and the detected 2D bounding

box. In this way, for every posed RGB frame, the system

annotates the detectable 3D objects, including their relative

pose in the camera frame, dimensions, semantic class, 2D

bounding boxes, visibility and truncation. Using these labels,

we fine-tune a 3D object detector. We choose Cube R-

(a) Sinks (b) Tables (c) Cabinets

Fig. 4: Object probability map mp which contains the per-object
distribution po(c | l), for specific classes of interest.

CNN [2], but our implementation allows integration of any

other 3D object detector with the same output structure.

Further details about the architecture and training procedure

can be found in Sec. IV.

B. Statistical Analysis of 3D Object Detections

Given posed RGB frames, capturing objects belonging to

classes of interest, we run inference on the images using

Cube R-CNN, fine-tuned with our labels. Given two non-

overlapping object predictions of the same class, a key issue

is determining whether they belong to the same instance

suffering from noisy detection or they are two separate

instances in close vicinity. This is particularly common with

semantic classes whose bounding boxes have one dimension

which is substantially smaller than the other, such as white-

boards. To address this problem, we analyze the per-class

characteristic noise for detections. For each class, we build

a 2D probability distribution by matching the 3D predictions

to map objects O, and projecting them in 2D on the ground

plane. For matching, a predicted object can be assigned to

a ground truth object only if the euclidean distance between

the center of the predicted object co and the center of the

ground truth object cGT is smaller than a threshold δ.

In the case a predicted object can be assigned to multiple

ground truth objects, we select the one with the highest 3D

IoU. In case the prediction has no overlap with any ground

truth, we match based on center distance only. Additionally,

if no ground truth center is within distance δ from the center

of the predicted object, we discard the prediction. Then, we

aggregate predictions of different objects of the same class by

transforming them into an object-centric coordinate system

where the center of the associated ground truth object is the

origin. For every class, we take the matched predictions and

project their center on the 2D plane. Additionally, we dis-

cretize the 2D plane into cells of 5 cm creating a histogram

of occurrences. Then, we fit a Gaussian distribution

p(c | l) =
1

√

2π|Σ|
exp

{

−
(c− µ)>Σ−1(c− µ)

2

}

, (2)

where c indicates the 2D center coordinate of the predicted

object, and l is its semantic class.

Then, we transform the per-class distribution p(c | l) to

be centered around each map object o of class l. We shift

the mean µ and rotate the covariance Σ of the class-specific

distribution in local frame, according to the projected 2D



center point co and the rotation matrix Ro of an object:

µo = µ+ co, Σo = Ro ΣR>
o . (3)

Thus, the per-object distribution po(c | l) is given by the

parameters µo and Σo of Eq. (3).

We build the object probability map mp by composing the

individual Gaussians of the map objects po(c | l), ∀o ∈ O.

Our object probability map mp can be seen in Fig. 4.

C. 3D Semantic Map Construction

Given posed RGB images and a 3D object detector, we

construct a metric semantic map to enhance a floor plan map.

We define an object as

o = {c, D, R, Iactive, nskip, nmatch}, (4)

where c is the center of the object, D = (W,H,L) is the

object’s bounding box dimensions, R is the orientation of

the bounding box, Iactive ∈ {0, 1} is a state that indicates

whether an object is active or not, nskip and nmatch are

two object-specific counters that will be explained in the

following. An object is in the active state if it is in the

camera frustum and is not occluded by other objects. We

test for the visibility of an object by rendering the 3D scene

into the camera frame, constraining the visibility with walls

extracted from the floor plan map. We aggregate consecutive

detections into a short-term, local map m̂g by associating

detected objects across different frames. Active objects are

associated by means of the Hungarian algorithm [13] and a

cost function defined by

C(o1, o2) =
1

2

(

CIoU + Ccen
)

(5)

CIoU = 1− IoU(o1, o2) (6)

Ccen = 1− po1(co2 | lo2), (7)

where o1 and o2 are detected objects, po1(co2 | lo2) repre-

sents the goodness score of a center prediction based on

the statistical analysis in Sec. III-B, co2 and lo2 are the

center and the semantic class of object o2, respectively. After

the robot has moved more than dxy or rotated more than

dθ, we integrate the objects of m̂g into the global object

map mg using the matching strategy described above. Given

the associations computed by the Hungarian algorithm, we

merge matched objects if the cost in Eq. (7) is below a

threshold τcost. Otherwise, we initialize a new map object.

When objects are merged, we increase the nmatch count. If

an active map object was not associated with a prediction, we

increase the nskip. When merging a prediction o1 to a map

object o2, we use a weighted average to update the center

and the dimensions of the bounding box:

co2 =
no2
match co2 + no1

match co1
no1
match + no2

match

Do2 =
no2
match Do2 + no1

match Do1

no1
match + no2

match

.

(8)

We update the rotation matrix by computing the weighted

average and extracting the rotation matrix via SVD as

proposed by Moakher et al. [19]:

U ΣV > = SVD

(

no2
match Ro2 + no1

match Ro1

no1
match + no2

match

)

(9)

Ro2 = U V >. (10)

Additionally, we update the weight of the object by

summing up nmatch. We purge objects from the map when

nmatch

nskip

< τpurge,

where τpurge is an empirically-chosen threshold.

We obtain room segmentation by applying morphological

operations and connected-component analysis on the floor

plan. This allows us to associate objects to rooms, so we

update only objects located in the room we are currently in.

D. 3D Semantic Localization

We globally localize using an MCL [5] framework. MCL

is a particle-based approach for estimating the robot state xt,

given the map m, odometry input ut and the observations zt.

Each particle st is represented by a state xt and a weight wt,

and the purpose of the sensor model is to assign a weight wt

to a particle st given an observation zt and the map m. In our

case, we localize in a 2D occupancy grid map, and therefore

the robot state is xt = (x, y, θ)>.

Our sensor model is based on the probabilistic analysis

of the accuracy of the 3D object detection model, see

Sec. III-B. Our observation z includes the object class l, the

confidence score f and the object 3D bounding box b3D in

the coordinate frame of the camera. For every particle st, we

transform the prediction into world frame using the particle

state xt, and we project it on the ground, obtaining the

corresponding 2D bounding box b̂2D.

To compute the weight of every particle we consider two

measures – the object-based likelihood po(z | mp,xt) and

the shape similarity score ps. Using the object probability

map mp computed in Sec. III-B, we sample po at the location

indicated by the center c of the transformed 2D bounding

box. To compute the likelihood of predicting a center c of

class l, we consider the corresponding class distribution for

every object given by the object probability map mp:

po(z | mp, xt) = max
{o∈O | lo=l}

po(c | l), (11)

where lo is the semantic class of object o. For data associa-

tion, we match the prediction to map object with the highest

likelihood, referred to as omax.

The metric semantic map ms, constructed in Sec. III-C,

stores the 3D bounding box of omax, which we project to 2D

bounding box b̂
max

2D . The shape similarity score is computed

from the IoU of the 2D bounding boxes b̂2D and b̂
max

2D :

pg(z | mg,xt) = exp

(

−

(

1−IoU

(

b̂2D, b̂
max

2D

)))

. (12)

The probability of detecting an object from particle

state xt is given by

p(z | m, xt) = po pg + (1− po) η, (13)



TABLE I: Algorithm parameters

Method σodom σobs rmax τs dxy dθ

Ours (0.15 m, 0.15 m, 0.15 rad) - - - 0.1 m 0.03 rad
HSMCL (0.15 m, 0.15 m, 0.15 rad) 6.0 15.0 m 0.6 0.1 m 0.03 rad

where η is an empirically computed constant, representing

the weight of a false data association, and po and pg are

defined in Eqs. 11 and 12, respectively. When K objects are

detected in a single frame, we compute the overall particle

weight as a geometric average

p(zt | m, xt) =

K
∏

k=1

p(zk
t | m, xt)

1

K . (14)

IV. EXPERIMENTAL EVALUATION

We present our experiments to show the capabilities of

our method. The results of our experiments also support our

key claims, which are: our approach is able to (i) generate

3D labels for fine-tuning of 3D object detection models, (ii)

enrich floor plans with object information, (iii) and localize

in such maps in an online fashion, using onboard computers.

A. Experimental Setup

To assess the performance of our approach, we made mul-

tiple recordings in our building. Our data collection platform

was a Kuka YouBot with 2 Hokuyo UTM-30LX LiDARs,

wheel encoders, 4 cameras with a joint coverage of 360◦

field-of-view, and an up-looking camera used strictly for

evaluation purposes. The recordings span across 9 months,

capturing changes to the lab furniture, varying amount of

clutter, human movement and opening and closing of doors.

To extract precise ground truth information about the

robot’s pose, we use an external localization infrastructure

based on densely placed (approx. 1 tag/m
2
) AprilTags, cov-

ering the ceiling of each room and corridor of our lab. In

every frame captured with the up-looking camera, we detect

multiple AprilTags computing the pose estimation in a least-

squares fashion and achieving accuracy of under 3 cm. A

high resolution point cloud of the lab, generated with a

terrestrial laser scanner, was also used to produce the 3D

labels used in III-A, and the localization infrastructure was

used to generate the poses for the RGB frames used the

metric-semantic mapping in III-C.

For Cube R-CNN [2], we fine-tuned the ResNet34-based

model [9] the authors provide for indoor perception. For

doing this, we created a list of objects of interest suitable for

long-term localization. The success of our approach depends

on the appropriate choice of the classes of interest. It is

important to consider the stability of the object classes, as

discussed in et al. [37], and their observability and map

coverage. We optimize our model with stochastic gradient

descent for 100 epochs, with an initial learning rate of 0.0015

and a batch size of 12. For training, we recorded sequences

T1-T7 on the second floor of our building.

As baseline, we compare against HSMCL [37], another

semantic MCL framework. All experiments were executed

Fig. 5: 2D projection for the 3 maps. Left: ground truth map
obtained with terrestrial laser scanner. Middle: KP map. Right: map
built using scan matching (ICP).

with 5000 particles. The parameters for the different ap-

proaches are reported in Tab. I. We consider three metrics,

the success rate, absolute trajectory error (ATE) after con-

vergence and convergence time. We define convergence as

the time when the estimate pose is within 0.3m radius of

the ground truth pose, and the orientation is within π
4

. After

globally localizing, the tracked pose must not diverge for

an accumulated 1.5 s. A localization run is successful if

convergence is achieved in the first 95% of the sequence

time and the tracked pose does not diverge. Each sequence

was evaluated multiple times to account for the inherent

stochasticity of the MCL framework, and the success rate

is computed over multiple runs.

B. Mapping

To support our second claim, we evaluate the quality of

our mapping pipeline. We use sequence M1, which include

ground truth poses, RGB stream, and 2D LiDAR scans,

while the robot was traversing the entire second floor. We

evaluate our constructed maps by matching them against a

ground truth (GT) map, extracted with a highly accurate

3D terrestrial laser scanner, and annotated manually. The

creation of the ground truth map is labour-intense offline

procedure that requires specialized sensors and equipment,

providing sub-centimeters accuracy. It has been carried out

for evaluation purposes only. Our constructed maps are built

using the metric-semantic mapping pipeline describe in Sec.

III-C, using data for sequence M1. For the first constructed

map, we used precise poses extracted from our localization

infrastructure, and we refer to it as known poses (KP)

map. We also generated a map using sensor-based poses,

estimated via ICP on 2D LiDAR scans. We aligned the

estimated poses to an existing grid map, such as floor plan,

by initializing the ICP with a known pose. We believe the

poses could also be extracted with low-drift visual-inertial

odometry pipelines [26]. We evaluated the accuracy of the

generated maps directly by comparing it to the ground truth

map, considering the IoU between objects in the object-based

map, and precision and recall. As can be seen in Tab. II and

Fig. 5, the constructed maps are well-matched to the ground

truth map: the IoU scores between the ground truth map and



TABLE II: Computed metrics for the two constructed maps compared to the map obtained with a FARO 3D scan. KP was constructed
based on known poses from infrastructure, and ICP was constructed with poses extracted from 2D LiDAR ICP.

map board cabinet desk drawers fire ext. oven plant sink sofa table AVG

IoU KP 0.54 0.75 0.79 0.39 0.55 0.85 0.61 0.77 0.68 0.76 0.67
Pr KP 1.00 1.00 1.00 0.56 1.00 1.00 1.00 1.00 1.00 1.00 0.96
Rc KP 0.94 0.92 1.00 0.62 1.00 1.00 1.00 1.00 1.00 0.95 0.94

IoU ICP 0.51 0.70 0.77 0.40 0.66 0.68 0.60 0.65 0.77 0.75 0.65
Pr ICP 1.00 1.00 1.00 0.56 1.00 1.00 1.00 1.00 1.00 1.00 0.96
Rc ICP 1.00 0.92 1.00 0.62 1.00 1.00 1.00 1.00 1.00 0.95 0.95

our generated map are high, while precision and recall are

close to 1, indicating a low number of false positives and

false negatives. We also evaluate the performance of robot

localization based on the constructed maps. The localization

accuracy for the KP map and the ICP map is on par with

the accuracy for the ground truth (GT) map, see Tab. III,

suggesting that our maps are well-suited for localization.

C. Long-Term Localization in CAD Floor Plans

To assess the performance of our localization approach, we

recorded sequences R1-R10, through our building, spanning

across nine months. These sequences include the addition

and removal of furniture, dynamic obstacles, and quasi-static

changes such as the closing and opening of doors. The

starting points for the localization sequences were spread

between different rooms and the corridor. Accuracy and

success rate are reported in Tab. III for the three different

maps. Each map was generated once, and has not been

updated during the evaluation period. Convergence time

averaged over sequences R1-R10 is 10.9 s for ground truth

map and 12.1 s for KP map.

D. Baseline Comparisons for Semantic Localization

We compare our approach to three strategies for integrat-

ing 3D object information into MCL. The first baseline,

called EDT-MCL, extends the commonly-used beam-end

point model. Based on the semantic metric map ms (see

Sec. III-C), we create an Euclidean distance transform (EDT)

for each semantic class.

The second approach, D-MCL, computes the particle

weight based on the object probability map mp and the like-

lihood po defined in Eq. (11). The third approach, O-MCL,

is based on the overlap between a predicted bounding box

and the semantic-metric map ms. The weight is computed

based on the overlap score described in Eq. (12).

As can be seen in Tab. IV, our approach outperforms

the baselines. Both EDT-MCL and O-MCL do not incor-

porate information about the model noise. D-MCL makes

use of the learned statistical information about the model

performance, but only considers the center of the prediction,

discarding valuable information about the object dimensions

and rotation. Our approach leverages both the geometric in-

formation from the 3D bounding box and takes into account

the characteristic model noise, which results in improved

performance. Unlike HSMCL, our approach does not use

LiDAR information, yet the localization is more robust.

E. Runtime

Our mapping and localization approaches both run online,

onboard of a mobile platform. On our robots, we use an Intel

NUC10i7FNK and a NVidia Jetson Xavier AGX. The 3D

object detection runs at ∼9 FPS on the NVidia Jetson, and

the sensor model executes at 60 FPS on the NUC10i7FNK.

This performance is sufficient to construct a 3D metric

semantic map and globally localize on our mobile platform.

A longer video, including live demoes for both mapping

and localization, and the code can be found on our GitHub

repository at https://github.com/PRBonn/SIMP.

V. CONCLUSION

In this paper, we presented a novel approach for semantic

global localization with a complementary 3D mapping pro-

cedure to build the object-based maps used for localization.

The augmentation of floor plan maps with the 3D metric

semantic maps assists navigation in cluttered and dynamic

indoor environments. We show that our semantically-guided

localization is reliable and accurate on both, the ground

truth map and the map acquired with our proposed pipeline,

benchmarking it over a dataset of challenging scenarios

spanning over nine months. We compared our approach to

similar approaches, and the experiments show how long-term

localization can benefit from 3D metric semantic maps.
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