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Abstract—Generating high-quality instance-wise grasp config-
urations provides critical information of how to grasp specific
objects in a multi-object environment and is of high importance
for robot manipulation tasks. This work proposed a novel Single-
Stage Grasp (SSG) synthesis network, which performs high-
quality instance-wise grasp synthesis in a single stage: instance
mask and grasp configurations are generated for each object
simultaneously. Our method outperforms state-of-the-art on
robotic grasp prediction based on the OCID-Grasp dataset, and
performs competitively on the JACQUARD dataset. The bench-
marking results showed significant improvements compared to
the baseline on the accuracy of generated grasp configurations.
The performance of the proposed method has been validated
through both extensive simulations and real robot experiments
for three tasks including single object pick-and-place, grasp
synthesis in cluttered environments and table cleaning task.

I. INTRODUCTION

In human-centered environments, robots are becoming in-

creasingly useful in a variety of applications related to manipu-

lating specific objects, thus a robust and efficient instance-wise

grasp synthesis approach is of great importance, as it provides

vital information (e.g., location and grasp configurations) for

manipulating target objects. Image-based instance-wise grasp

synthesis in cluttered environments is yet a very challenging

task. It aims at generating high-quality grasp configurations

for specific objects in the multi-object scenario using a single

image as the input. In this paper, we seek to leverage the

success of prior research on semantic instance segmentation

as well as generative grasp synthesis to design a novel model,

which solves instance-wise grasp synthesis tasks in a single-

stage manner for robotic manipulations.

Designing an image-based instance-wise grasp synthesis

model is difficult for two key reasons: (i) current 2D grasp

synthesis approaches either employ a region proposal network

to find graspable regions [1], [2], [3], [4], or adopt generative

model to predict pixel-wise grasp configurations [5], [6], [7],

[8]. Both of these approaches are limited to scene-level grasp

synthesis; in other words, they can only determine which parts

of the scene are graspable, but not which objects. (ii) Since

the grasp configurations are mostly generated from regional or

global features, the relationship between objects and grasps is

not clear. Thus, it is difficult to determine the grasp affiliations.

Recent research tackle instance-wise grasp synthesis tasks in

a two-stage way [9], [10], [11], [12]: (i) in the first stage, grasp
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configurations will be generated for all graspable regions of

the global input; (ii) then, the generated grasp configurations

will be assigned to specific objects with the help of additional

information, which is often derived from object detection or

semantic segmentation. Two-stage methods inherently lack

the relationship between predicted grasp configurations and

detected objects, since the object detection task and object

detection/segmentation task are completed separately. These

methods mostly suffer from inaccurate grasp assignment, lack

of class-specific information, and inefficiency stemmed from

its cascade structure [9], [12] (Details in Fig. 3, Section IV-A).

To address these limitations and solve instance grasp synthe-

sis tasks in a more efficient and accurate way, we proposed the

Single-Stage Grasp (SSG) synthesis model. The term “single-

stage” stands for the way of generating instance-wise grasp

configurations. The grasp configurations are generated for

each object instance directly without additional refinement or

assignment modules which are commonly used in previous

methods [9], [10], [11], [12].

Our proposed SSG formulates the instance-wise grasp syn-

thesis as two parallel tasks. The first task focuses on generating

a set of prototype masks for the input RGB-D image, which

can be regarded as vocabulary or global descriptors. The sec-

ond task is to detect objects in the image and predicts extra sets

of coefficients for each detected object. Finally, for each object

that survives Non-Maximum Suppression (NMS), those sets of

coefficients are used to linearly assemble prototype masks to

generate both instance segmentation and grasp masks. Here,

grasp masks refer to pixel-wise grasp configurations proposed

by [5], [6]. In our proposed method, SSG, bounding box, class

label, instance mask, and grasp masks are generated in parallel

for each detected object which strongly keep the relationship

between objects and grasps. The overall architecture (Fig. 1)

clearly delineates the unique process of the proposed method.

The contributions are summarized as follows: (1) A novel

Single-Stage Grasp (SSG) synthesis model, which solves the

challenging instance-wise grasp synthesis tasks in a single-

stage manner; (2) The proposed SSG outperforms state-of-

the-art on OCID-Grasp dataset, and performs competitively on

JACQUARD dataset, through the evaluation on extensive tests

and validations in both simulations and real robot experiments.

The proposed SSG succeeded in synthesizing instance-

wise grasp configurations in highly cluttered scenarios, where

objects had 10% to 25% of overlapped areas, while other

two-stage methods failed due to the mismatch between grasps

and objects, and segmentation errors. Further, we demonstrate

the scalability of the proposed method by extending it to

affordance detection tasks (See Section IV-D in details), and

show the proposed method can be used as a general pipeline

for multiple robot manipulation tasks.
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Fig. 1: System structure of the proposed model. The grasp configurations is generated as follows: (1) Feature extraction; (2)

Generating of prototype masks; (3) Object detection, prediction of coefficients; (4) Linearly combination of prototypes with

different predicted coefficients to generate instance mask and grasp masks; (5) Post processing to infer grasp configurations

from generated grasp masks.

II. RELATED WORKS

Learning-based 2D robotic grasp synthesis has been in-

creasingly attracting attention in past years [13]. Modern

learning-based 2D grasp synthesis approaches can be roughly

categorized into detection-based and generative approaches.

Detection-based approaches adopt object detection pipelines

and treat grasp synthesis task as a detection task, since grasp

configurations can be represented as rotated rectangles in

image plane [1], [2], [3], [14], [15]. The work of [1] performed

transfer learning between object detection and grasp detection.

A Rotated Region Proposal Network (RRPN), which is pre-

trained on object detection dataset, is adopted to generate

graspable region proposals. A single-stage grasp detection

network purely based on Region Proposal Network (RPN) was

proposed in [2]. The grasp rectangles are directly regressed

and classified from oriented anchors which are generated from

RPN. ROI-GD [3] is a two-stage approach that detects grasp

synthesis for specific regions by leveraging features from the

object region rather than global input.

On the other hand, generative approaches produce pixel-

wise grasp configurations for an input image [5], [6], [7], [8].

In this category, GG-CNN [5] approach aims to predict pixel-

wise grasp configurations from depth images using generative

neural network, where grasp configurations are embedded into

three target masks representing grasp quality, grasp angle, and

width of gripper respectively. Based on such representation

of grasp configurations, the work in [6] introduced residual

structure into generative neural network. Also, Guassian kernel

are introduced in [7], [8], [16] to better represent grasp config-

urations. In comparison with detection-based grasp synthesis

methods, generative grasp synthesis methods avoid the gener-

ation of redundant region proposals and discrete sampling.

Despite improvements in learning based grasp synthesis [3],

[6], instance-wise grasp synthesis is still challenging. Most ap-

proaches solve instance-wise grasp prediction problems indi-

rectly, by defining a set of surrogate detection and assignment

tasks [9], [10], [11], [12]. In such pipelines, additional seman-

tic segmentation or object detection branches are commonly

adopted to assign grasp candidates to a specific object.

Representative multi-task frameworks were proposed in [9],

[12] which include two networks for object detection and

grasp detection respectively. The results of object detection

were adopted to assign grasp candidates to specific objects.

TOG-CRFs proposed in [10] adds a Conditional Random

Field (CRF) to the grasp detection network, which models

semantic contents of object regions to enable task-oriented

grasp synthesis. Another work in [11] adds an semantic

segmentation branch alongside the grasp detection branch to

refine grasp candidates and assign them to target objects.

Mask-Grasp RCNN proposed in [17] is based on Mask-

RCNN [18]: a instance segmentation network. The method

in [17] adds additional regression heads to the Mask-

RCNN [18] to detect and regress grasps from aligned Regions-

of-Interest (RoIs) directly for each detected object instance.

Mask-Grasp RCNN [17] is the first single-stage instance-wise

grasp synthesis method, which is used in this work as a

baseline of a single-stage method for the comparison study.

III. PROPOSED METHOD

A. Problem Formulation

This work aims to synthesize grasp configurations for each

object from an RGB-D image in a single-stage way. The

task is defined as: to predict grasp configurations for each
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Fig. 2: 2D grasp rectangles are embedded into four different

masks to represent grasp quality, grasp position, grasp angle

and gripper width.

detected instance in an image plane. Grasp configurations in

an image plane are commonly represented as rotated rectan-

gle: Grasprect = (x, y, θ, w, q), such as the formulation in [1],

[2], [3], [14], [15], where (x, y) corresponds to the center of

grasp rectangle in the image coordinates, θ is the rotation in

camera’s frame of reference, w is the required width of gripper,

q is the quality of grasping. In our method, we formulated

an additional label (cls) for each grasp configurations that

indicate which object it belongs to.

To enable instance-wise grasp prediction, we adopted an

approach similar to [5], [6], and further developed a grasp

representation that can be integrated with the existing instance

segmentation framework. For each object instance, we embed

its ground truth grasp configurations into multiple masks in-

dicating grasp position, grasp quality, grasp angle and gripper

width (see Fig. 2). For a better representation of grasp quality,

for each pixel, we calculate the number of overlapped grasp

rectangles which include the pixel itself, and use Sigmoid

function to generate the grasp quality mask.

B. Architecture

We developed the SSG, a single-stage grasp synthesis

model, with insights from YOLACT [19]. Fig. 1 details the

sub-modules and the workflow of our proposed method. First,

a feature extraction module, consisting of ResNet-101 [20] and

Feature Pyramid Network (FPN) [21], is adopted to extract

shared multi-scale features from input RGB-D image. Deep

layers (C3, C4, C5) from ResNet-101 module are linked to

FPN. Then, the ProtoNet branch, which is a fully convolutional

network [22] with k-channel output, is used to generate a set

of 32 prototype masks (k = 32) for the entire input RGB-

D image. P3 layer of FPN is used as the input of ProtoNet

branch, as the largest and deepest feature layer of FPN, to

produce more robust and fine-grained prototype masks. The

concept of prototype masks is similar to those representation

learning concepts for object detection from [23], [24], [25].

We note an important observation here: the learned proto-

type masks (feature embeddings) are generalized to different

domains. We found that by using different coefficients to

linearly assemble the same set of prototype masks, we can

generate instance masks and grasp masks.

For the object detection branch, a typical anchor-based

object detection branch is extended by adding N extra heads

predicting N × k coefficients for each detected objects. For

each object that survives NMS, we predict its class, bound-

ing box, k coefficients for assembling its instance mask, k

coefficients for assembling its grasp position mask, 2 × k

coefficients for assembling its grasp angle masks (represented

in sin(2θ) and cos(2θ), θ is the valid grasp angle), and k

coefficients for assembling its width mask. These predicted

sets of coefficients will be used to linearly assemble prototype

masks generated from ProtoNet and form target output masks:

semantic instance mask, grasp quality mask, grasp angle masks

and gripper width mask.

C. Post Processing

Target Masks Generation. As shown in Fig. 1, the Pro-

toNet branch will generate h × w × k prototype masks P

for the input RGB-D image, where h,w denote the size of

the prototype mask. N × k coefficients C are predicted for

every detected object (N = 5). Then prototype masks P

are linearly assembled with coefficients C to generate target

masks, M = Activation(PC
>). In this study, M is composed

of five masks corresponding to instance mask, grasp quality

mask, grasp angle masks and gripper width mask. For instance

mask, grasp quality mask and gripper width mask, Sigmoid

activation function is used to limit the output range from 0 to

1. For grasp angle masks, tanh activation function is used to

limit the output range from −1 to 1.

Mask Crop. Generated target masks for each object are

cropped using its bounding box. The ground truth bounding

boxes are used in training, while the predicted ones are used

during evaluation.

Grasp Configuration Inference. The grasp configurations

are inferred based on the grasp masks obtained by linearly

assembling prototype masks and cropping with bounding

boxes. For each object instance, firstly a local maximum point

is searched in its grasp quality map to find the point with the

highest grasp quality and its pixel coordinates, then the grasp

angles and gripper width are obtained from corresponding

masks with pixel coordinates of the best grasp point.

D. Loss Function

Our loss function is composed of five different losses as:

object classification (`cls), bounding box regression (`box),

global semantic segmentation (`smask), instance segmenta-

tion (`imask), and grasp synthesis (`gr). `cls, `box and `imask

are defined the same as in [19]. `smask is used to accelerate the

convergence of our model. `g consists of five losses including

grasp quality loss (`gr−q), grasp position loss (`gr−p), grasp

angle loss (in sin and cos, `gr−sin, `gr−cos) and gripper width

loss (`gr−w). `gr−q , `gr−sin, `gr−cos and `gr−w are calculated

using smooth-L1 loss, `gr−p is calculated using binary cross

entropy loss. The total loss L is summed as:

L =αcls`cls + αbox`box + αimask`imask

+ αgr`gr + αsmask`smask

, (1)

where `gr = αp`gr−p+αq`gr−q+αsin`gr−sin+αcos`gr−cos+
αw`gr−w.

IV. EVALUATION

We evaluate and benchmark the performance of the pro-

posed method on instance-wise robotic grasp detection dataset

OCID-Grasp [11], and class-agnostic robotic grasp detection

dataset JACQUARD [26]. Moreover, a set of simulations and



TABLE I: Simulations results: 20 simulated tests were conducted for each object.

Objects Apple Banana Lemon Mug Bowl Bottle Marker Cereal Box

Success Rate [%] 90 85 85 80 75 75 90 90

Objects Sponge Soda Can Juice Box Cup Spatula Knife Soap Power Driller

Success Rate [%] 85 90 80 80 80 75 80 85
Results from two-stage method [11] Results from our methodInput

+

+

+

Results from two-stage method [11] Results from our method

+

+

+

Input

Fig. 3: Failure cases of two-stage method, compared to the correct results from the proposed single-stage method: (left) Failures

of two-stage method caused by inaccurate grasp assignment; (right) Failures of two-stage method caused by segmentation errors.

TABLE II: Results of grasp accuracy on OCID-Grasp

Dataset [11].

Method Grasp Accuracy Speed (FPS)

Deg Seg RGB[11] 89.02 % 31

Deg Seg RGBD[11] 89.84 % 31

SSG RGB (ours) 91.97 % 39

SSG RGBD (ours) 92.93 % 39

Image Bounding Box Instance Mask Grasp Quality Mask Grasp Angle Mask Grasp Width Mask Final Results

M
ug

B
an

an
a

Fig. 4: Test results on OCID-Grasp dataset where grasp

configurations were generated for each target object.

real robot experiments have been conducted to validate the

performance of the proposed method for real-world robotics

applications.

To evaluate and quantify the accuracy of predicted grasp

configurations of each object on datasets, we applied an

extended version of metrics by adding a new condition, based

on the Jacquard Index proposed in [26]. That is, a grasp

candidate is valid if the following conditions are satisfied: (i)

The predicted class label of the grasp candidate is correct; (ii)

The angle difference between the predicted grasp candidate

and ground truth grasp is within 30◦; (iii) The Intersection

over Union (IoU) of the predicted grasp rectangle and the

ground truth is greater than 0.25.

A. Evaluation on OCID-Grasp Dataset

The OCID-Grasp dataset is an extension of Object Clutter

Indoor Dataset (OCID) [27] annotated by [11], which consists

of 1763 selected RGB-D images with over 11.4K segmented

instance masks and 75K hand-annotated grasp rectangles with

corresponding object class information. Objects in OCID-

Grasp dataset are classified into 31 different categories. For

each scenario, RGB image, depth image, semantic segmen-

tation mask, and grasp annotation with instance labels are

provided.

On OCID-Grasp dataset, our model is trained on the official

train set and validated on the test set. To augment the size

of datasets for training our network, based on OCID-Grasp,

we applied random data augmentation including random pho-

tometric distortion, random clip and multi-scale resize. We

outperform state-of-the-art on OCID-Grasp dataset with an

overall grasp accuracy of 92.9%. The results are summarised

in TABLE II.

In comparison with the two-stage baseline method as

in [11], our method perform instance segmentation and

instance-wise grasp synthesis simultaneously to synthesize

grasp configuration in a single stage, with the accuracy of

92.9% and the inference speed of 39 frames per second –

which has outperformed the baseline with a significant margin

by 3.91% in accuracy and 25% in inference speed. Fig. 4

shows the results of two representative test samples from the

OCID-Grasp dataset. To better support the advance of our

proposed method, representative cases are show in Fig. 3

in which two-stage method [11]) failed while our proposed

method succeeded.

TABLE III: Comparison of grasp accuracy ([%]) on

JACQUARD Dataset [26], with different IoU thresholds and

angle threshold of 30◦. Results for [11], [28], [29] are taken

from [11]. Results of [6] are reproduced.

Method IoU 25% IoU 30% IoU 35%

Method of [28] 81.95 78.26 74.33

Method of [29] 85.74 82.58 78.71

Mask-Grasp RCNN [17] 89.80 - -

Method of [2] 91.5 89.7 87.3

Gr-ConvNet [6] 91.83 89.55 85.99

Det [11] 92.69 91.29 88.99

Det-Seg-Refine [11] 92.95 91.33 88.96

SSG(Ours) 91.8 89.95 88.49

B. Evaluation on JACQUARD Dataset

The JACQUARD Dataset is built on a subset of

ShapeNet [30] which is a large CAD model dataset. It consists

of 54485 different scenes from 11619 distinct objects. In

total, it has over 4.9M grasp annotations (from over 1.1M



TABLE IV: Comparison of grasp accuracy ([%]) for

JACQUARD Dataset [26], with different angle thresholds

and IoU threshold of 25%. Results of [11], [28], [29] are

referenced from [11], and results of [6] are reproduced.
Method 30

◦
25

◦
20

◦
15

◦
10

◦
5
◦

Method of [28] 81.95 81.76 81.27 80.23 77.79 -

Method of [29] 85.74 85.55 85.01 83.65 80.82 -

Mask-Grasp RCNN [17] 89.80 - - - - -

Gr-ConvNet [6] 91.83 90.00 87.34 83.45 77.94 63.67

Det [11] 92.68 92.34 92.08 91.40 88.12 56.23

Det-Seg-Refine [11] 92.95 92.88 92.42 91.52 88.12 72.79

SSG(Ours) 91.8 91.11 90.05 87.97 81.68 60.87

Fig. 5: Simulation and experiment setups.

unique locations). For each scenario, a render RGB image, a

segmentation mask, two depth images and grasp annotations

are provided.

However, the JACQUARD Dataset only contains single-

object scenes without class labels for grasp annotations. Thus,

we applied minimal adaptation of our method and make

it a class-agnostic one, we labeled all objects as “object”.

Our model was trained on JACQUARD dataset in a class-

agnostic way and evaluated using several metrics with different

thresholds. Detailed results are summarised in TABLE IV and

TABLE III (Unavailable results were denoted as “-”).

The evaluation on the JACQUARD Dataset show that our

method is generalized and can predict both high-quality in-

stance masks and grasp masks for general objects without

class-specific information. Despite the lack of class-specific in-

formation, our approach was very competitive among learning-

based 2D grasp synthesis approaches. Further, we have con-

ducted ablation study to support the importance of class-

specific information (Details in Section V). Replacing the de-

tection and segmentation heads with a class-agnostic one, such

like [31], could be a potential way to boost the performance

of our method on the JACQUARD Dataset.

We note that our proposed method, the SSG, significantly

surpasses the Mask-Grasp RCNN [17] which is another single-

stage instance-wise grasp synthesis method based on Mask-

RCNN [18]. Our method has reached 91.8% grasp accuracy on

the Jacquard dataset [26] which outperforms the Mask-Grasp

RCNN [17] by 2%. Moreover, our method can run inference

at 39FPS rate, which is almost three times faster than the

Mask-Grasp RCNN [17] (14FPS).

C. Simulation and Real Robot Experiments

A set of simulations and real robot experiments have been

conducted to validate that our model can be used to generate

high-quality grasp candidates for robotic manipulators: (i) sin-

gle object pick-and-place task in simulation; (ii) table cleaning

task using a real robot.

Fig. 6: Real robot performing the table cleaning task in three

different levels of difficulties: highly cluttered, cluttered and

isolated real-world scenarios.

Our simulations and experiments focused on table top

domains, where objects are in arbitrary spatial arrangements

on the table. The simulation setup used a synthetic dataset

from [32] which contains 90 simulated house-hold objects,

imported from different resources, e.g., YCB dataset [33],

Gazebo repository. The whole setup is composed of a dual

arm robot with two UR5 manipulators and a Kinect sensor to

acquire RGB-D images. For real robot experiments, we used

exactly the same setup (see Fig. 5). We trained a model using

OCID-Grasp dataset [11] which is used for both simulations

and experiments.

In the first task, 16 objects, including 6 unseen objects (Juice

Box, Cup, Spatula, Knife, Soap and Power Driller) have been

selected. In each trial, one of them was randomly put on a

table for 20 rounds of pick-and-place. A grasp configuration

is considered successful if the object can be grasped, lifted up

and placed at the designed place. The success rate for each

object has been summarized in TABLE I.

The second task is focused on validating the proposed

method on a real robot for table cleaning. In this task, an

operator randomly places a set of unseen objects on the

table and the robot should remove and place them into the

predefined targets one by one. This task has been repeated in

3 different levels of difficulties: isolated (less than 3 objects),

cluttered (less than 10 objects) and highly cluttered (more

than 15 objects). A set of snapshots is shown in Fig. 6. We

performed ten rounds of experiments per level, and assessed

the performance by the success rate, where the attempt is

considered as a success if the target object can be grasped

and moved to the target successfully. The results showed that

the robot is able to accomplish the task with success rates of

84.0%, 79.4% and 71.3%, respectively. It should be noted that

in some failure cases in (highly) cluttered environments, al-

though the grasp predictions were correct, execution of grasps

were not feasible due to either the limitation of the motion

planning or prevention of the grasp action in presence of the

surrounding objects, rather than due to the grasp predictions

themselves. The video of our experiments is available at

https://youtu.be/riBXMgrupUw.

D. Scalability

The success of our proposed SSG shows the potential and

scalability of feature assembling using linear coefficients. To

https://youtu.be/riBXMgrupUw.


TABLE V: Ablation study on OCID-Grasp Dataset [11].

Model SSG

SSG
without

instace segmentation

SSG
without

class prediction
SSG

SSG
without

instance segmentation

SSG
without

class prediction

Input Modalities RGB RGB RGB RGB+Depth RGB+Depth RGB+Depth

Grasp Accuracy 91.97% 90.92% 90.31% 92.93% 92.09% 90.81%
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Fig. 7: Results of a set of tests in clutter environments on

simulated and real objects.

further prove the scalability of our method, we re-train our

model on Object Stacking Grasping Dataset (OSGD) [9],

which includes additional affordance annotations from total

11 different types of grasping actions including cut, write,

hammer, fork, shovel, wrench, pinch, screw, ladle, brush and

hand-over. Here, the affordance annotation refers to the correct

grasping action (e.g., knife – cut, screwdriver – screw, etc.).

For each object sample from OSGD dataset, its class label,

bounding box, grasp annotations (in rectangles) and affordance

annotations are provided. To generate additional affordance

masks for each detected object, we add 11 extra heads in the

object detection branch to predict 11 sets of coefficients to

linearly assemble the shared prototype masks, and generate

11 target affordance masks. Since this dataset does not pro-

vide the instance semantic masks, our architecture is adopted

accordingly: the global semantic segmentation head and the

instance mask head are removed. Moreover, the OSGD dataset

only provides depth image as input, thus the input channel of

the feature extraction module is changed and no pre-trained

model is used to initialize the feature extraction module.

As is shown in Fig. 8, correct affordance masks as well

as grasp configurations are generated for different target ob-

jects which prove the scalability and extendability of the our

proposed model. It can be extended to predict extra target

masks by simply adding more coefficients predicting heads

without changing the overall complexity. This feature of our

methodology, in our opinion, will have an great impact on the

field of robotic grasping synthesis research.

E. Ablation Study

A set of ablation study was conducted to support the current

design. The detection head of our model is composed of

three modules: object detection, instance segmentation, and

generation of grasp maps. To validate the proposed network

design, we have retrained and tested two additional models on

the OCID-Grasp dataset [11]: (1) a model without predicting

object class label; (2) a model without generating instance

mask. The detailed results are shown in the TABLE V.

It can be seen from TABLE V that the depth channel

brings useful information and increases the performance. The

Grasp Quality Mask Grasp Angle Mask Grasp Width Mask

Brush

Affordance Masks

Hand-over

Pinch Hand-over

Hammer Hand-over

Write Hand-over

Fig. 8: Validation results on the OSGD dataset [9], further

showing our method can generate additional affordance masks

by predicting more sets of coefficients and assembling proto-

type masks with these coefficients.

instance segmentation module and the class prediction module

also play an important role for grasp synthesis. Without

instance segmentation head, the overall grasp accuracy of our

model on OCID-Grasp dataset [11] decreases from 91.97% to

90.92% (with RGB input), and from 92.93% to 92.09% (with

RGB-D input). Without class prediction head, the overall grasp

accuracy of our model on OCID-Grasp dataset [11] decreases

from 91.97% to 90.31% (with RGB input), and from 92.93%

to 90.81% (with RGB-D input). The results of the ablation

study has shown the benefits of our proposed network design:

Generating different target masks by linearly assembling the

same set of learned feature maps with different coefficients,

which is able to exchange features across different domains,

and also to make the learned feature maps more general and

robust. V. CONCLUSION

This work developed a novel single-stage grasp synthesis

model – SSG – for tackling instance-wise grasp synthesis

task in a single-stage manner. Our method formulated the

instance-wise grasp synthesis as two sub-tasks: first, a set

of learned feature embeddings is generated, which captures

general features of the input RGB-D image; second, anchor-

based object detection is conducted. For each detection, five

sets of coefficients are predicted that will be used to linearly

assemble generated feature embeddings to form a semantic

instance mask and four grasp masks, simultaneously. We eval-

uated our method on the well-known JACQUARD dataset and

a more challenging OCID-Grasp dataset. The results showed

that our method outperforms the state-of-the-art on OCID-

Grasp dataset and performs competitively on JACQUARD

dataset. Moreover, the proposed method has been extensively

tested both in simulation and on the real robot, using isolated,

cluttered and highly cluttered scenarios. All these extensive

results validated that our method can generate valid grasp

configurations for target objects in multi-object scenarios.
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