
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2022. 1

KISS-ICP: In Defense of Point-to-Point ICP –

Simple, Accurate, and Robust Registration

If Done the Right Way
Ignacio Vizzo Tiziano Guadagnino Benedikt Mersch Louis Wiesmann Jens Behley Cyrill Stachniss

Fig. 1: Point cloud maps (blue) generated by our proposed odometry pipeline on different datasets with the same set of parameters. We depict
the latest scan in yellow. The scans are recorded using different sensors with different point densities, different orientations, and different
shooting patterns. The automotive example stems from the MulRan dataset [15]. The drone of the Voxgraph dataset [23] and the segway
robot used in the NCLT dataset [5] show a high acceleration motion profile. The handheld Livox LiDAR [17] has a completely different
shooting pattern than the commonly used rotating mechanical LiDAR.

Abstract—Robust and accurate pose estimation of a robotic
platform, so-called sensor-based odometry, is an essential part
of many robotic applications. While many sensor odometry
systems made progress by adding more complexity to the ego-
motion estimation process, we move in the opposite direction. By
removing a majority of parts and focusing on the core elements,
we obtain a surprisingly effective system that is simple to realize
and can operate under various environmental conditions using
different LiDAR sensors. Our odometry estimation approach
relies on point-to-point ICP combined with adaptive thresholding
for correspondence matching, a robust kernel, a simple but
widely applicable motion compensation approach, and a point
cloud subsampling strategy. This yields a system with only a few
parameters that in most cases do not even have to be tuned
to a specific LiDAR sensor. Our system performs on par with
state-of-the-art methods under various operating conditions using
different platforms using the same parameters: automotive plat-
forms, UAV-based operation, vehicles like segways, or handheld
LiDARs. We do not require integrating IMU data and solely rely
on 3D point clouds obtained from a wide range of 3D LiDAR
sensors, thus, enabling a broad spectrum of different applications
and operating conditions. Our open-source system operates faster
than the sensor frame rate in all presented datasets and is
designed for real-world scenarios.

Index Terms—Mapping; Localization; SLAM

I. INTRODUCTION

O
DOMETRY estimation is an essential building block for

any mobile robot that needs to autonomously navigate in

unknown environments. In the LiDAR sensing domain, current

odometry pipelines typically use some form of iterative closest

point (ICP) to estimate poses incrementally [10], [26], [31],

[35]. Even though LiDAR odometry has been an active area

of research for the last three decades, the design of current

systems is usually coupled with assumptions about the robot

motion [10] and the structure of the environment [28] to

Manuscript received: September 14, 2022; Revised: December 5, 2022; Ac-
cepted: December 27, 2022. This paper was recommended for publication by
Editor Javier Civera upon evaluation of the Associate Editor and Reviewers’
comments.

This work has partially been funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excel-
lence Strategy, EXC-2070 – 390732324 – PhenoRob and by the European
Union’s HORIZON research and innovation programme under grant agree-
ment No 101070405 (Digiforest).

All authors are with the University of Bonn, Germany. Cyrill Stachniss is
additionally with the Department of Engineering Science at the University of
Oxford, UK, and with the Lamarr Institute for Machine Learning and Artificial
Intelligence, Germany.

Digital Object Identifier (DOI): see top of this page.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2022.

achieve accurate and robust alignment results. To the best of

our knowledge, no existing 3D LiDAR odometry approach is

free of parameter tuning and works out of the box in different

scenarios, using arbitrary LiDAR sensors, supporting different

motion profiles, and consequently types of robots, such as

ground and aerial robots.

This paper returns to the roots: classical point-to-point ICP,

introduced 30 years ago by Besl and McKay [3]. We aim

to tackle the inherent problems of sequentially operating Li-

DAR odometry systems that prohibit current approaches from

generalizing to different environments, sensor resolutions, and

motion profiles using a single configuration. We present simple

yet effective reasoning about the robot kinematics and the

sequential way LiDAR data is recorded on a mobile platform,

as well as an effective downsampled point cloud representation

that allows us to minimize the need for parameter tuning.

Our system challenges even extensively hand-tuned and

optimized existing simultaneous localization and mapping

(SLAM) systems. Our design uses neither sophisticated feature

extraction techniques, learning methods, nor loop closures.

The same parameter set works in various challenging scenarios

such as highway drives of robot cars with many dynamic

objects, drone flights, handheld devices, segways, and more.

Thus, we take a step back from mainstream research in LiDAR

odometry estimation and focus on reducing the components to

their essentials. This makes our system perform extraordinarily

well in various real-world scenarios, see Fig. 1.

The main contribution of this paper is a simple yet highly

effective approach for building LiDAR odometry systems that

can accurately compute a robot’s pose online while navigating

through an environment. We identify the core components and

properly evaluate the impact of different modules on such

systems. We show that with the proper use of ICP that builds

on basic reasoning about the system’s physics and the sensor

data’s nature, we obtain competitive odometry. Besides motion

prediction, spatial scan downsampling, and a robust kernel, we

introduce an adaptive threshold approach for ICP in the context

of robot motion estimation that makes our approach effective

and, at the same time, generalizes easily.

We make three key claims: Our “keep it small and simple”

approach exploiting point-to-point ICP is (i) on par with

state-of-the-art odometry systems, (ii) can accurately compute

the robot’s odometry in a large variety of environments and

motion profiles with the same system configuration, and (iii)

provides an effective solution to motion distortion without

relying on IMUs or wheel odometers. In sum, “good old point-

to-point ICP” is a surprisingly powerful tool, and there is little

need to move to more sophisticated approaches if the basic

components are done well.

We provide an open-source implementation at: https://

github.com/PRBonn/kiss-icp that precisely follows the de-

scription of this paper.

II. RELATED WORK

Point cloud registration has been an active area of research

for the last three decades [3], [9] and is still relevant nowadays.

The ICP algorithm can solve the problem of finding a transfor-

mation that brings two different point clouds into a common

reference frame, and it is a special case of the absolute

orientation problem in photogrammetry. ICP typically consists

of two parts. The first one is to find correspondences between

the point clouds. The second one computes the transformation

that minimizes an objective function defined on the corre-

spondences from the first step. One repeats this process until

a convergence criterion is met. Most ICP variants [1], [10],

[11], [26], [21], [35] utilize a maximum distance threshold

in the data association module plus a robust kernel [6] and

a maximum number of iterations. In contrast, we propose a

threshold estimation method that adapts to changing scenarios

by reasoning about the system kinematics and the nature

of the data in combination with a robust kernel. We avoid

controlling the number of iterations of the ICP to achieve

better generalization.

ICP can be used to obtain an odometry estimation from

streaming data from a sensor such as RGB-D cameras [19]

or LiDARs [10]. In this work, we focus on the problem of

LiDAR odometry estimation, although the ideas presented can

be easily extended to other range-sensing technologies.

Nearly all modern SLAM systems build on top of odom-

etry algorithms. Zhang et al. [35] proposed lidar odometry

and mapping (LOAM) that computes the robot’s odometry

by registering planar and edge features to a sparse feature

map. LOAM inspired numerous other works [27], [33], such as

Lego-LOAM [28], which adds ground constraints to improve

accuracy, and recently F-LOAM [33], which revised the orig-

inal method with a more efficient optimization technique en-

abling faster operation. However, these methods rely on hand-

tuned feature extraction, which typically requires tedious pa-

rameter tuning that depends on sensor resolution, environment

structure, etc. In contrast, we only rely on point coordinates

removing this data-dependent parameter adaptation.

Behley and Stachniss [1] propose the surfel-based method

SuMa to achieve LiDAR odometry estimation and mapping.

It has also been extended to account for semantics [8] and

explicitly handle dynamic objects [7]. In contrast to the surfel-

based mapping, Deschaud [11] introduced IMLS-SLAM [11]

selecting an implicit moving least square surface [16] as map

representation. Along these lines, Vizzo et al. [31] exploited

a triangular mesh as the internal map representation. All the

above approaches rely on a point-to-plane [24] metric to regis-

ter consecutive scans. This requires normal estimation, which

introduces additional data-dependent parameters. Furthermore,

noisy 3D information can impact the normal computation and

subsequently the registration in a negative way. We will show

that by minimizing a simpler point-to-point metric, we obtain

on-par or better odometry performance. Moreover, this design

choice enables us to represent the internal map as a voxelized,

downsampled point cloud, simplifying the implementation.

Recently, several new approaches [10], [21], [27] have been

proposed to solve the odometry estimation problem. Most of

these works focus on the runtime operation of the system

as well as on the accuracy. Pan et al. [21] propose a multi-

metric system (MULLS) that obtains good results in many

challenging scenarios at the cost of tuning many parameters for

each run. Dellenbach et al. [10] introduced a novel approach,

called continuous time ICP (CT-ICP), which incorporates the

https://github.com/PRBonn/kiss-icp
https://github.com/PRBonn/kiss-icp

VIZZO et al.: KISS-ICP: IN DEFENSE OF POINT-TO-POINT ICP – SIMPLE, ACCURATE, AND ROBUST REGISTRATION IF DONE THE RIGHT WAY 3

motion un-distortion into the registration showing great results

but adding more complexity. Additionally, the robots’ motion

profile must be known a priori, as, for example, a car will have

a different profile than a segway platform. We challenge the

need for sophisticated optimization techniques to cope with

motion distortion requiring only the constant velocity model.

Furthermore, our system only relies on a few parameters, and

we do not need to know the motion profile in advance.

Many state-of-the-art odometry systems [1], [10], [21], [27]

also rely on pose graph optimization to achieve a better

alignment. In contrast, we do not exploit such techniques

and state that pose graph optimization is orthogonal to the

presented approach and can be easily integrated. In sum, we

step back from the common mainstream work on LiDAR

odometry and propose a system that solely relies on a point-to-

point metric and does not employ pose graph optimization [1],

[10], [21], [27]. Our system can run on different types of

mobile robots, drones, handheld devices, and segways, without

the need to fine-tune the system to a specific application.

III. KISS-ICP – KEEP IT SMALL AND SIMPLE

This work aims to incrementally compute the trajectory of

a moving LiDAR sensor by sequentially registering the point

clouds recorded by the scanner. We reduced the components

to a minimal set needed to build an effective, accurate, robust,

and still reasonably simple LiDAR odometry system.

For each 3D scan in form of a local, egocentric point

cloud P = {pi |pi ∈R
3}, we perform the following four steps

to obtain a global pose estimate Tt ∈SE(3) at time t. First,

we apply sensor motion prediction and motion compensation,

often called deskewing, to undo the distortions of the 3D data

caused by the sensor’s motion during scanning. Second, we

subsample the current scan. Third, we estimate correspon-

dences between the input point cloud and a reference point

cloud, which we call the local map. We use an adaptive

thresholding scheme for correspondence estimation, restricting

possible data associations and filtering out potential outliers.

Fourth, we register the input point cloud to the local map using

a robust point-to-point ICP algorithm. Finally, we update the

local map with a downsampled version of the registered scan.

Below, we describe these components in detail.

A. Step 1: Motion Prediction and Scan Deskewing

We advocate for rethinking the point cloud registration in

the context of mobile robots, which continuously record data.

One should not think of it as registering arbitrary pairs of

3D point clouds. Instead, one should phrase it as estimating

how much the robot’s actual motion deviates from its expected

motion by registering consecutive scans.

Different approaches can be used to compute the robot’s

expected motion before considering the LiDAR data. The three

most popular choices are the constant velocity model, wheel

odometry obtained through encoders, and IMU-based motion

estimation. The constant velocity [29] model assumes that a

robot moves with the same translational and rotational velocity

as in the previous time step. It requires no additional sensors

(no wheel encoder, no IMU) and thus is the most widely

applicable option.

Our approach uses the constant velocity model for two

reasons: first, it is generally applicable, requires no additional

sensors, and avoids the need for time synchronization between

sensors. Second, as we will show in our experimental evalua-

tion, it works well enough to provide a solid initial guess when

searching for data associations and deskewing 3D scans. This

follows from the fact that robotic LiDAR sensors commonly

record and stream point clouds at 10 Hz to 20 Hz, i.e., every

0.05 s to 0.1 s. In most cases, the acceleration or deceleration,

i.e., the deviations from the constant velocity model that occurs

within such short time intervals, are fairly small. If the robot

accelerates or decelerates, the constant velocity estimation of

the robot’s pose will be slightly off, and therefore, we need to

correct this estimate through registration. These accelerations

determine the possible displacements of the (static) 3D points.

The constant velocity model approximates the trans-

lational and angular velocities, denoted as vt and ωt

at time t respectively, by using the previous pose esti-

mates Tt−1 =(Rt−1, tt−1) and Tt−2 =(Rt−2, tt−2), repre-

sented by a rotation matrix Rt ∈SO(3) and a translation

vector tt ∈R
3 for the time step t. We first compute the relative

pose Tpred,t that we will use as motion prediction as:

Tpred,t =

[

R
⊤

t−2 Rt−1 R
⊤

t−2 (tt−1 − tt−2)
0 1

]

, (1)

then derive the corresponding velocities as:

vt =
R

⊤

t−2 (tt−1 − tt−2)

∆t
, (2)

ωt =
Log(R⊤

t−2 Rt−1)

∆t
, (3)

where ∆t is the acquisition time of one LiDAR sweep,

typically 0.05 s or 0.1 s, and Log: SO(3)→R
3 extracts the

axis-angle representation.

Note that also wheel odometry or an IMU-based motion

prediction approach can be used instead to compute vt and

ωt for each time step. This will not change the remainder of

our approach. For example, if one has good wheel odometry

available, this can also be used. However, we use constant

velocity as a generally applicable approach.

Within the acquisition time ∆t of one LiDAR sweep,

multiple 3D points are measured by the scanner. The relative

timestamp si ∈ [0,∆t] for each point pi ∈P describes the

recording time relative to the scan’s first measurement. This

relative timestamp allows us to compute the motion compen-

sation resulting in a deskewed point p∗
i ∈P

∗ of the corrected

scan P∗ reading by

p∗
i = Exp(siωt)pi + sivt, (4)

where Exp: R3→SO(3) computes a rotation matrix from an

axis-angle representation. Note that Exp(siωt) is equivalent

to performing SLERP in the axis-angle domain.

This form of scan deskewing, especially with the constant

velocity model, is easy to implement, generally applicable, and

does not require additional sensors, high-precision time syn-

chronization between sensors, or IMU biases to be estimated.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2022.

As we show in Sec. IV, this approach often performs even

better than more complex compensation systems [10], at least

as long the motion between the start and end of the sweep is

small as it is for most robotics applications.

B. Step 2: Point Cloud Subsampling

Identifying a set of keypoints in the point cloud is a common

approach for scan registration [14], [24], [35]. It is typically

done to achieve faster convergence and/or higher robustness in

the data association. However, complex filtering of the point

cloud usually comes with an extra layer of complexity and

parameters that often need to be tuned.

Rather than extracting 3D keypoints, which often requires

environment-dependent parameter tuning, we propose to com-

pute only a spatially downsampled version P̂∗ of the deskewed

scan P∗. Downsampling is done using a voxel grid. As we will

explain in Sec. III-C below in more detail, we use a voxel grid

as our local map, where each voxel call has a size of v× v× v
and each cell only store a certain number of points. Every time

we process an incoming scan, we first downsample the point

cloud of the scan to an intermediate point cloud P∗
merge, which

is later used to update the map when the relative motion of

the robot has been determined with ICP. To obtain the points

in P∗
merge, we use voxel size α v with α∈ (0.0, 1.0] and keep

only a single point per voxel.

For the ICP registration, an even lower resolution scan

is beneficiary. Thus, we compute a further reduced point

cloud P̂∗ by downsampling P∗
merge again using a voxel size of

β v with β ∈ [1.0, 2.0] keeping only a single point per voxel.

This further reduces the number of points processed during

the registration and allows for a fast and highly effective

alignment. The idea of this “double downsampling” stems

from CT-ICP [10], the so far best performing open-source

LiDAR odometry system on KITTI.

Most voxelization approaches, however, select the center of

each occupied voxel to downsample the point cloud [25], [36].

Instead, we found it advantageous to maintain the original

point coordinates, select only one point per voxel for a single

scan, and keep its coordinates to avoid discretization errors.

This means the reduced cloud is a subset of the deskewed one,

i.e., P̂∗⊆P∗. In our implementation, we keep only the first

point that was inserted into the voxel.

C. Step 3: Local Map and Correspondence Estimation

In line with prior work [1], [10], [19], [35], we register

the deskewed and subsampled scan P̂∗ to the point cloud

built so far, i.e., a local map, to compute an incremental

pose estimate ∆Ticp. We use frame-to-map registration as

it proves more reliable and robust than the frame-to-frame

alignment [1], [19]. To do that effectively, we must define a

data structure representing the previously registered scans.

Modern approaches have used very different types of rep-

resentations for this local map. Popular approaches are voxel

grids [35], triangle meshes [31], surfel representations [1], or

implicit representations [11]. As mentioned in Sec. III-B, we

utilize a voxel grid to store a subset of 3D points. We use

a grid with a voxel size of v× v× v and store up to Nmax

points per voxel. After registration, we update the voxel grid

by adding the points {Tt p |p∈P
∗
merge} from the new scan

using the global pose estimate Tt. Voxels that already contain

Nmax points are not updated. Additionally, given the current

pose estimate, we remove voxels outside the maximum range

rmax. Thus, the size of the map will stay bounded.

Instead of a 3D array, we use a hash table to store the voxels,

allowing a memory-efficient representation and fast nearest

neighbor search [10], [20]. However, the used data structure

can be easily replaced with VDBs [18], [32], Octrees [30],

[34], or KD-Trees [2].

D. Adaptive Threshold for Data Association

ICP typically performs a nearest neighbor data association

to find corresponding points between two point clouds [3].

When searching for associations, it is common to impose a

maximum distance between corresponding points, often using

a value of 1 m or 2 m [1], [31], [35]. This maximum distance

threshold can be seen as an outlier rejection scheme, as all

correspondences with a distance larger than this threshold are

considered outliers and are ignored.

The required value for this threshold τ depends on the

expected initial pose error, the number and type of dynamic

objects in the scene, and, to some degree, the sensor noise. It

is typically selected heuristically. Based on the considerations

about the constant velocity motion prediction in Sec. III-A, we

can, however, estimate a likely limit from data by analyzing

how much the odometry may deviate from the motion predic-

tion over time. This deviation ∆T in the pose corresponds

exactly to the local ICP correction to be applied to the

predicted pose (but it is not known beforehand). Intuitively,

we can observe the robot’s acceleration in the magnitude of

∆T. If the robot is not accelerating, then ∆T will have a

small magnitude, often around zero, meaning that the constant

velocity assumption holds and no correction has to be done

by ICP.

We integrate this information into our data association

search by exploiting the so-far successful ICP executions.

We can estimate the possible point displacement between

corresponding points in successive scans in the presence of

a potential acceleration expressed through ∆T as:

δ(∆T) = δrot(∆R) + δtrans(∆t), (5)

where ∆R ∈SO(3) and ∆t∈R3 refer to the rotational and

translational component of the deviation, given by

δrot(∆R) = 2 rmax sin

(

1

2
arccos

(
tr(∆R)− 1

2

)

︸ ︷︷ ︸

θ

)

(6)

δtrans(∆t) = ∥∆t∥2. (7)

The term δrot(∆R) represents the displacement that occurs

for a range reading with maximum range rmax subject to the

rotation ∆R, see also Fig. 2. Note that Eq. (5) constitutes an

upper bound for the point displacement as

∥∆R p+∆t− p∥2 ≤ δrot(∆R) + δtrans(∆t), (8)

which follows from the triangle inequality.

VIZZO et al.: KISS-ICP: IN DEFENSE OF POINT-TO-POINT ICP – SIMPLE, ACCURATE, AND ROBUST REGISTRATION IF DONE THE RIGHT WAY 5

For obtaining δrot other approaches could be considered,

like taking into account the individual ranges for the adaptive

threshold computation [4]. In our tests, we did not see any

difference in the results but a 3-fold increase of the overall

runtime; thus, we use rmax instead of r for computing δrot.

To compute the threshold τt at time t, we consider a

Gaussian distribution over δ using the values of Eq. (5) over

the trajectory computed so far whenever the deviation was

larger than a minimum distance δmin, i.e., situations where the

robot’s motion was deviating from the constant velocity model.

Its standard deviation is

σt =

√

1

|Mt|

∑

i∈Mt

δ(∆Ti)2, (9)

where the index set Mt of deviations up to t is given by

Mt = {i | i < t ∧ δ(∆Ti) > δmin}. (10)

This avoids reducing the value of σt too much when the

robot is not moving or is moving at constant velocity for

a long time. In our experiments, we set this threshold δmin

to 0.1 m. We then compute the threshold τt as the three-sigma

bound τt =3σt, which we use in the next section for the data

association search.

E. Step 4: Alignment Through Robust Optimization

We base our registration on classic point-to-point ICP [3].

The advantage of this choice is that we do not need to

compute data-dependent features such as normals, curvature,

or other descriptors, which may depend on the scanner or

the environment. Furthermore, with noisy or sparse LiDAR

scanners, features such as normals are often not very reliable.

Thus, neglecting quantities such as normals in the alignment

process is an explicit design decision that allows our system

to generalize well to different sensor resolutions.

To obtain the global estimation of the pose Tt of the

robot, we start by applying our prediction model Tpred,t to

the scan P̂∗ in the local frame. Successively, we transform

it into the global coordinate frame using the previous pose

estimate Tt−1, resulting in the source points

S =
{

si = Tt−1Tpred,t p | p ∈ P̂
∗

}

. (11)

For each iteration j of ICP, we obtain a set of cor-

respondences between the point cloud S and the local

map Q= {qi | qi ∈R
3} through nearest neighbor search over

the voxel grid (Sec. III-C) considering only correspondences

with a point-to-point distance below τt. To compute the current

pose correction ∆Test,j , we perform a robust optimization

minimizing the sum of point-to-point residuals

∆Test,j = argmin
T

∑

(s,q)∈C(τt)

ρ(∥Ts− q∥2), (12)

where C(τt) is the set of nearest neighbor correspondences

with a distance smaller than τt and ρ is the Geman-McClure

θ rmax p

∆R

∆t

rmax

∆Rp+∆t

δtrans(∆t) δrot(∆R)

δ(
∆

T
)

Fig. 2: Exemplary computation of the maximum point displacement
δ(∆T) caused by a rotational and translational deviation (∆R,∆t)
from the predicted motion.

robust kernel, i.e., an M-estimator with a strong outlier rejec-

tion property, given by

ρ(e) =
e2/2

σt/3
︸︷︷︸

κt

+e2
, (13)

where the scale parameter κt of the kernel is adapted online

using σt. Lastly, we update the points si, i.e.,

{si ← ∆Test,jsi | si ∈ S} , (14)

and repeat the process until the convergence criterion is met.

As a result of this process, we obtain the transformation

Tt =∆Ticp,tTt−1Tpred,t, where ∆Ticp,t =
∏

j ∆Test,j . While

we apply the prediction model Tpred,t (i.e., the constant ve-

locity prediction) to the local coordinate frame of the scan,

we perform the ICP correction ∆Ticp,t in the global reference

frame of the robot. This is done for efficiency reasons as it

allows us to transform the source points S only once per ICP

iteration. With this, the local pose deviation ∆Tt at time t
used in the Eq. (5) can be expressed as

∆Tt = (Tt−1Tpred,t)
−1

∆Ticp,tTt−1Tpred,t. (15)

A standard termination criterion for the ICP algorithm

is to control the number of iterations. Additionally, most

approaches also have a further criterion based on the minimum

change in the solution. Conversely, we found that controlling

the number of iterations does not allow the algorithm to always

find a good solution. Thus, we only employ the termination

criterion based on the applied correction being smaller than γ,

without imposing a maximum number of iterations.

Finally, the ICP correction is applied to the point

cloud P∗
merge, and the points are integrated into the local map.

F. Parameters

Our implementation depends on a small set of seven param-

eters. All are shown in Tab. I. We use the same parameters

for all experiments. Most other approaches use a substantially

larger set of parameters: MULLS [21] has 107 parameters,

SuMa [1] has 49 parameters, and CT-ICP [10] has 30 pa-

rameters in their respective configuration files. In contrast,

our approach only has two parameters for the correspondence

search, four for the map representation and scan subsampling,

and one for the ICP termination. Note that the maximum range

of a scanner is a value that depends on the specific sensor in

use and, as such, we do not consider it a system parameter.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2022.

Parameter Value

Initial threshold τ0 2 m
Min. deviation threshold δmin 0.1 m
Max. points per voxel Nmax 20

Voxel size map v 0.01 rmax

Factor voxel size map merge α 0.5
Factor voxel size registration β 1.5

ICP convergence criterion γ 10
−4

TABLE I: All seven parameters of our approach.

However, for some scenarios, the value of rmax might also be

adapted to the specific environment in which the system is

operating, e.g., not considering far away measurements that

are usually less accurate.

IV. EXPERIMENTAL EVALUATION

This work provides a simple yet effective LiDAR odometry

pipeline that comes with a small set of parameters. We present

our experiments to show the capabilities of our method. The

results of our experiments support our key claims, namely

that our approach (i) is on par with more complex state-

of-the-art odometry systems, (ii) can accurately compute the

robot’s odometry in a large variety of environments and motion

profiles with the same system configuration, and (iii) provides

an effective solution to motion distortion without relying on

IMUs or wheel odometers.

A. Experimental Setup

We use numerous datasets and common evaluation methods.

We start with the KITTI odometry dataset [12] to evaluate our

system against state-of-the-art approaches to LiDAR odometry.

To investigate how we perform in other autonomous driving

datasets employing a different sensor, we evaluate our ap-

proach on the MulRan dataset [15]. Additionally, we show that

our approach can be used in different scenarios, such as the

one present in the NCLT dataset [5], a segway dataset, and the

Newer College dataset [22] recorded using a handheld device.

We also analyze our method’s different components, such as

the motion-compensation scheme and the adaptive threshold.

Please note that due to space limitations we omit to show

the results of the trajectories and a detailed runtime evaluation

in this manuscript but refer the reader to the official project

page where all the plots and per-sequence evaluation on the

runtime performances are available.1

B. Performance on the KITTI-Odometry Benchmark

This experiment evaluates the performance of different

odometry pipelines on the popular KITTI benchmark dataset.

Since most systems do not do motion compensation, we use

the already compensated KITTI scans for a fair comparison

and disable the motion compensation for our approach and CT-

ICP [10] in this first analysis (the performance of the motion

compensation module will be studied later in Sec. IV-D1).

Tab. II exhibits how our system challenges most state-of-the-

art systems, which are typically more sophisticated than our

point-to-point ICP. Based on the official KITTI Benchmark,

1https://www.github.com/PRBonn/kiss-icp/tree/main/evaluation

Method Seq. 00-10 Seq. 11-21

S
L

A
M SuMa++ [1] 0.70 1.06

MULLS [21] 0.52 -
CT-ICP [10] 0.53 0.59

O
d

o
m

et
ry

IMLS-SLAM [11] 0.55 0.69
MULLS [21] 0.55 0.65
F-LOAM [33] 0.84 1.87

SuMa [1] 0.80 1.39
Ours 0.50 0.61

TABLE II: KITTI Benchmark results with motion compensated data.
We report the average relative translational error in % [13]. We
compare across SLAM methods employing pose-graph optimization
for improved results (top) and odometry methods (bottom). We
omit the relative rotational error, but these results are available at
https://www.cvlibs.net/datasets/kitti/eval odometry.php

we rank second among the open-source approaches (behind

CT-ICP [10]) and ninth among all submissions. This indicates

that our comparably simple system still performs better than all

the publicly available systems out there, except CT-ICP [10].

Note that CT-ICP is a complete SLAM system, and it uses loop

closures to correct for the accumulated drift of the odometry

estimation. We in contrast obtain our results using only open-

loop registration without any loop closing.

C. Comparison to State-of-the-Art Systems on Other Datasets

We proceed to analyze the performance of our system on

different datasets, scenarios, and types of robots. For that,

we use the MulRan dataset [15], a handheld device [22],

and a segway dataset [5]. Odometry pipelines typically deal

with those challenging scenarios but employ IMUs [27] or

a different system configuration [10]. Our system performs

on par with state-of-the-art systems using the same parameter

values for all experiments and datasets. For this experi-

ment, we compare against state-of-the-art odometry systems,

namely MULLS [21], SuMa [1], F-LOAM [33], and CT-

ICP [10]. Note that we do not provide an evaluation of CT-ICP

for the MulRan dataset since CT-ICP does not provide support

for this dataset.

For the MulRan dataset [15], we test the systems under

evaluation on all available public sequences. Since the dataset

provides three similar runs for each sequence, we report the

average number of each sequence in Tab. III. Our method

outperforms all state-of-the-art approaches by a large margin

in both relative and absolute error.

We use both available sequences to evaluate the Newer Col-

lege dataset and achieve similar results on the short experiment

compared to CT-ICP. For the long experiment, the perfor-

mance gap can be explained by the additional loop closing

module of CT-ICP, which is a complete SLAM system. For

the NCLT dataset experiment, we use the sequence evaluated

on the original work of CT-ICP. We could not reproduce

the results reported in CT-ICP [10] and therefore report the

results given in the original paper [10] in Tab. IV. We achieve

similar results than CT-ICP. However, we observed errors in

the GPS ground-truth poses and missing frames. Therefore,

the numbers on NCLT should be taken with a grain of salt

and rather provide an estimate of how the systems perform.

We discourage using NCLT to evaluate odometry systems:

https://www.github.com/PRBonn/kiss-icp/tree/main/evaluation
https://www.cvlibs.net/datasets/kitti/eval_odometry.php

VIZZO et al.: KISS-ICP: IN DEFENSE OF POINT-TO-POINT ICP – SIMPLE, ACCURATE, AND ROBUST REGISTRATION IF DONE THE RIGHT WAY 7

Sequence Method
Avg.

tra.

Avg.

rot.

ATE

tra.

ATE

rot.

KAIST

MULLS [21] 2.94 0.86 37.24 0.11
SuMa [1] 5.59 1.73 43.61 0.14

F-LOAM [33] 3.43 0.99 46.17 0.15
Ours 2.28 0.68 17.40 0.06

DCC

MULLS [21] 2.96 0.98 38.35 0.12
SuMa [1] 5.20 1.71 36.22 0.11

F-LOAM [33] 3.83 1.14 42.70 0.13
Ours 2.34 0.64 15.16 0.05

Riverside

MULLS [21] 5.42 2.21 91.16 0.16
SuMa [1] 13.86 2.13 227.24 0.38

F-LOAM [33] 5.47 1.18 138.09 0.22
Ours 2.89 0.64 49.02 0.08

Sejong*

MULLS [21] 5.93 0.84 2151.00 0.49
F-LOAM [33] 7.87 1.20 3448.97 0.82

Ours 4.69 0.70 1369.54 0.33

TABLE III: Quantitative results on the MulRan dataset [15]. We
report the relative translational error and the relative rotational error
using the KITTI [13] metrics. Additionally, we show the absolute
trajectory error for translation in m and for rotation in rad.

Method
NCD

01-short

NCD

02-long

NCLT

2012-01-8

MULLS [21] 0.82 1.23 -
F-LOAM [33] 2.02 fails -
CT-ICP [10] 0.48 0.58 1.17

Ours 0.51 0.96 1.27

TABLE IV: Quantitative results for Newer College and NCLT. We
report the relative translational error in % [13].

misalignments in the ground truth poses, missing frames, and

inconsistencies in the data make the evaluation of odometry

systems on such a dataset not a good evaluation tool from our

perspective. However, we provide the results for completeness.

We show qualitative results in Fig. 1 generated using

our KISS-ICP poses. Using a single system configuration,

we can produce consistent maps on different sensor setups

(Velodyne/Ouster vs. Livox) and different motion profiles (car,

drone, segway, handheld) with the same parameters.

D. Ablation Studies

To understand how each component of our system impacts

the odometry performance, we conduct ablation studies on

the different components of our approach, namely, the motion

compensation scheme and the adaptive threshold. To carry out

these studies, we use the KITTI odometry dataset [12] as it is

probably the best-known one.

1) Motion Compensation: To assess the impact of our

motion compensation scheme, we utilize the raw LiDAR point

clouds without any compensation applied. Note that the KITTI

odometry benchmark point cloud data [12] is already compen-

sated and, therefore, cannot be used for this study. Thus, we

use the KITTI raw dataset [13]. We present the results in a fa-

miliar fashion, selecting only the sequences that correspond to

the ones on the motion-compensated datasets [12]. As we can

see in Tab. V, our motion compensation scheme can produce

state-of-the-art results and is on par with substantially more

sophisticated and thus complex compensation techniques such

as the one introduced by CT-ICP [10]. Additionally, we study

Method Avg. tra Avg. rot Avg. freq.

MULLS [21] 1.41 - 12 Hz
IMLS-SLAM [11] 0.71 - 1 Hz

CT-ICP [10] 0.55 - 15 Hz
Ours without deskewing 0.91 0.27 51 Hz
Ours + Deskewing (IMU) 0.51 0.19 38 Hz
Ours + Deskewing (CV) 0.49 0.16 38 Hz

TABLE V: Results of evaluating different state-of-the-art systems
on KITTI-raw dataset (without motion compensation). We report the
relative translational error and the relative rotational error using the
KITTI [13] metrics. Additionally, we report the runtime operation of
the systems being in consideration for this experiment.

Dataset
Data-Association Threshold τ

0.3 m 0.5 m 1.0 m 2.0 m Ours

KITTI Seq. 00 0.54 0.51 0.53 0.55 0.51

KITTI Seq. 04 0.39 0.41 0.37 0.39 0.36

KITTI Avg. Seq. 00-10 0.53 0.51 0.51 0.53 0.50

TABLE VI: Comparison of different fixed thresholds vs. our proposed
adaptive threshold on the KITTI dataset. We report the relative
translational error in % [13].

how our system performs without applying motion compen-

sation, as shown in Tab. V. We also evaluate the performance

of our constant velocity model for motion compensation. To

assess this, we compare the same compensation strategy but

replace the velocity estimation with sensor data taken by the

IMU. As seen in the results, our velocity estimation is on par

or even slightly better with the IMU.

Besides the fact that CT-ICP’s elastic formulation yields

good results, our much simpler approach produces even better

results. This result shows that the constant velocity model

employed in our approach for compensating motion distortion

is sufficient to cope with the slight reduction in performance

when no compensation is applied. Consequently, we believe

that more sophisticated techniques are unnecessary for most

robotic odometry estimation.

2) Adaptive Data-Association Threshold: We finally evalu-

ate how the adaptive threshold τt impacts the performance

of our system by comparing it to a different set of fixed

thresholds commonly used in open-source systems. To conduct

this experiment, we identify the two KITTI sequences with

the largest (00) and the smallest (04) average acceleration

indicating different motion profiles. As we can see in Tab. VI,

the best fixed threshold for sequence 00 is 0.5 m and 1.0 m

for sequence 04. This means that a fixed threshold has to be

tuned depending on the motion profile and thus to the dataset

to achieve top performance. In contrast, our adaptive algorithm

exploits the motion profile to estimate the threshold online,

which results in on-par or better performance without the need

to find a new fixed threshold for each sequence. Finally, our

proposed adaptive threshold strategy achieves the best average

result on the KITTI training sequences.

Please note that all the experiments from this ablation study

use the robust kernel. For space reasons, we omitted the results

of the evaluation of our system when no kernel is employed

and only report the results averaged over the sequences. Not

using the kernel produces 0.67% for the translational error and

0.25% for the rotational error [13].

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2022.

V. CONCLUSION

This paper presents a simple yet highly effective approach

to LiDAR odometry and shows that point-to-point ICP works

very well – when used properly. Our approach operates solely

on point clouds and does not require an IMU, even when

dealing with high-frequency driving profiles. Our approach

exploits the classical point-to-point ICP to build a generic

odometry system that can be employed in different challeng-

ing environments, such as highway runs, handheld devices,

segways, and drones. Moreover, the system can be used with

different range-sensing technologies and scanning patterns. We

only assume that point clouds are generated sequentially as

the robot moves through the environment. We implemented

and evaluated our approach on different datasets, provided

comparisons to other existing techniques, supported all claims

made in this paper, and released our code. The experiments

suggest that our approach is on par with substantially more

sophisticated state-of-the-art LiDAR odometry systems but

relies only on a few parameters, and performs well on various

datasets under different conditions with the same parameter

set. Finally, our system operates faster than the sensor frame

rate in all presented datasets. We believe this work will be a

new baseline for future sensor odometry systems and a solid,

high-performance starting point for future approaches. Our

open-source code is robust and simple, easy to extend, and

performs well, pushing the state-of-the-art LiDAR odometry

to its limits and challenging most sophisticated systems.

VI. ACKNOWLEDGEMENTS

We thank Pierre Dellenbach for making his CT-ICP code

available, which inspired our implementation. We thank Yue

Pan for helping with the evaluation of MULLS for this paper.

Thanks also to Igor Bogoslavskyi for his feedback.

REFERENCES

[1] J. Behley and C. Stachniss. Efficient Surfel-Based SLAM using 3D
Laser Range Data in Urban Environments. In Proc. of Robotics: Science

and Systems (RSS), 2018.
[2] J. Bentley. Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9):509–517, 1975.
[3] P. Besl and N. McKay. A Method for Registration of 3D Shapes.

IEEE Trans. on Pattern Analalysis and Machine Intelligence (TPAMI),
14(2):239–256, 1992.

[4] J.L. Blanco-Claraco. Mobile robot programming toolkit (mrpt). URL:

http://www. mrpt. org/, 2014.
[5] N. Carlevaris-Bianco, A. Ushani, and R. Eustice. University of Michigan

North Campus long-term vision and lidar dataset. Intl. Journal of

Robotics Research (IJRR), 35(9):1023–1035, 2016.
[6] N. Chebrolu, T. Läbe, O. Vysotska, J. Behley, and C. Stachniss. Adaptive

Robust Kernels for Non-Linear Least Squares Problems. IEEE Robotics

and Automation Letters (RA-L), 6:2240–2247, 2021.
[7] X. Chen, S. Li, B. Mersch, L. Wiesmann, J. Gall, J. Behley, and

C. Stachniss. Moving Object Segmentation in 3D LiDAR Data: A
Learning-based Approach Exploiting Sequential Data. IEEE Robotics

and Automation Letters (RA-L), 6:6529–6536, 2021.
[8] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and C. Stach-

niss. SuMa++: Efficient LiDAR-based Semantic SLAM. In Proc. of the

IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2019.
[9] Y. Chen and G. Medioni. Object modeling by registration of multiple

range images. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots

and Systems (IROS), 1991.
[10] P. Dellenbach, J. Deschaud, B. Jacquet, and F. Goulette. CT-ICP Real-

Time Elastic LiDAR Odometry with Loop Closure. In Proc. of the IEEE

Intl. Conf. on Robotics & Automation (ICRA), 2022.

[11] J. Deschaud. Imls-slam: scan-to-model matching based on 3d data. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2018.

[12] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite. In Proc. of the IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), 2012.
[13] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets Robotics:

The KITTI Dataset. Intl. Journal of Robotics Research (IJRR), 32(11),
2013.

[14] T. Guadagnino, X. Chen, M. Sodano, J. Behley, G. Grisetti, and
C. Stachniss. Fast Sparse LiDAR Odometry Using Self-Supervised
Feature Selection on Intensity Images. IEEE Robotics and Automation

Letters (RA-L), 7(3):7597–7604, 2022.
[15] J. Jeong, Y. Cho, Y. Shin, H. Roh, and A. Kim. Complex urban lidar

data set. In Proc. of the IEEE Intl. Conf. on Robotics & Automation

(ICRA), 2018.
[16] R. Kolluri. Provably good moving least squares. ACM Transactions on

Algorithms (TALG), 4(2):1–25, 2008.
[17] J. Lin and F. Zhang. Loam livox A Robust LiDAR Odemetry and

Mapping LOAM Package for Livox LiDAR. In Proc. of the IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), 2019.
[18] K. Museth, J. Lait, J. Johanson, J. Budsberg, R. Henderson, M. Alden,

P. Cucka, D. Hill, and A. Pearce. Openvdb: an open-source data structure
and toolkit for high-resolution volumes. In ACM SIGGRAPH Courses.
2013.

[19] R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A.J.
Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFu-
sion: Real-Time Dense Surface Mapping and Tracking. In Proc. of the

Intl. Symposium on Mixed and Augmented Reality (ISMAR), 2011.
[20] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3D

Reconstruction at Scale using Voxel Hashing. In Proc. of the SIGGRAPH

Asia, 2013.
[21] Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li. MULLS: Versatile LiDAR

SLAM Via Multi-Metric Linear Least Square. In Proc. of the IEEE

Intl. Conf. on Robotics & Automation (ICRA), 2021.
[22] M. Ramezani, Y. Wang, M. Camurri, D. Wisth, M. Mattamala, and

M. Fallon. The newer college dataset: Handheld lidar, inertial and vision
with ground truth. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent

Robots and Systems (IROS), 2020.
[23] V. Reijgwart, A. Millane, H. Oleynikova, R. Siegwart, C. Cadena, and

J. Nieto. Voxgraph: Globally consistent, volumetric mapping using
signed distance function submaps. IEEE Robotics and Automation

Letters (RA-L), 5(1):227–234, 2019.
[24] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm.

In Proc. of Int. Conf. on 3-D Digital Imaging and Modeling, 2001.
[25] R.B. Rusu and S. Cousins. 3d is here: Point cloud library (pcl). In

Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2011.
[26] J. Serafin and G. Grisetti. NICP: Dense Normal Based Point Cloud

Registration. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots

and Systems (IROS), pages 742–749, 2015.
[27] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus. LIO-

SAM Tightly-Coupled Lidar Inertial Odometry Via Smoothing and
Mapping. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots

and Systems (IROS), 2020.
[28] T. Shan and B. Englot. LeGO-LOAM: Lightweight and Ground-

Optimized Lidar Odometry and Mapping on Variable Terrain. In Proc. of

the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2018.
[29] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,

2005.
[30] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. Kelly, and S. Leutenegger.

Efficient octree-based volumetric slam supporting signed-distance and
occupancy mapping. IEEE Robotics and Automation Letters (RA-L),
3(2):1144–1151, 2018.

[31] I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss. Poisson
Surface Reconstruction for LiDAR Odometry and Mapping. In Proc. of

the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021.
[32] I. Vizzo, T. Guadagnino, J. Behley, and C. Stachniss. VDBFusion:

Flexible and Efficient TSDF Integration of Range Sensor Data. Sensors,
22(3):1296, 2022.

[33] H. Wang, C. Wang, C. Chen, and L. Xie. F-LOAM: Fast LiDAR
Odometry and Mapping. In Proc. of the IEEE/RSJ Intl. Conf. on

Intelligent Robots and Systems (IROS), 2021.
[34] M. Zeng, F. Zhao, J. Zheng, and X. Liu. Octree-based fusion for realtime

3d reconstruction. Graphical Models, 75(3):126–136, 2013.
[35] J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in Real-

time. In Proc. of Robotics: Science and Systems (RSS), 2014.
[36] Q. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D

data processing. arXiv:1801.09847, 2018.

	Introduction
	Related Work
	KISS-ICP – Keep It Small and Simple
	Step 1: Motion Prediction and Scan Deskewing
	Step 2: Point Cloud Subsampling
	Step 3: Local Map and Correspondence Estimation
	Adaptive Threshold for Data Association
	Step 4: Alignment Through Robust Optimization
	Parameters

	Experimental Evaluation
	Experimental Setup
	Performance on the KITTI-Odometry Benchmark
	Comparison to State-of-the-Art Systems on Other Datasets
	Ablation Studies
	Motion Compensation
	Adaptive Data-Association Threshold

	Conclusion
	Acknowledgements
	References

