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Abstract— Perception is crucial for robots that act in real-
world environments, as autonomous systems need to see and
understand the world around them to act properly. Panoptic
segmentation provides an interpretation of the scene by com-
puting a pixelwise semantic label together with instance IDs. In
this paper, we address panoptic segmentation using RGB-D data
of indoor scenes. We propose a novel encoder-decoder neural
network that processes RGB and depth separately through
two encoders. The features of the individual encoders are
progressively merged at different resolutions, such that the RGB
features are enhanced using complementary depth information.
We propose a novel merging approach called ResidualExcite,
which reweighs each entry of the feature map according to
its importance. With our double-encoder architecture, we are
robust to missing cues. In particular, the same model can
train and infer on RGB-D, RGB-only, and depth-only input
data, without the need to train specialized models. We evaluate
our method on publicly available datasets and show that our
approach achieves superior results compared to other common
approaches for panoptic segmentation.

I. INTRODUCTION

Holistic scene understanding is crucial in several robotics

applications. The ability of recognizing objects and obtaining

a semantic interpretation of the surrounding environment is

one of the key capabilities of truly autonomous systems. Se-

mantic scene perception and understanding supports several

robotics tasks such as mapping [5] [28], place recognition [9],

and manipulation [36]. Panoptic segmentation [20] unifies

semantic and instance segmentation, and solves both jointly.

Its goal is to assign a semantic label and an instance ID to

each pixel of an image. The content of an image is typically

divided into two sets: things and stuff. Thing classes are

composed of countable objects (such as person, car, table),

while stuff classes are amorphous regions of space without

individual instances (such as sky, street, floor).

In this paper, we target panoptic segmentation using

RGB-D sensors. This data is especially interesting in indoor

environments where the geometric information provided by

the depth can help dealing with challenging scenarios such

as cluttered scenes and dynamic objects. Additionally, we

address the problem of being robust to missing cues, i.e.,

when either the RGB or the depth image is missing. This

is a practical issue, as robots can be equipped with both,

RGB-D and RGB cameras, and sometimes have to operate

in poor lighting conditions in which RGB data is not reliable.
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Fig. 1: Our double-encoder network for RGB-D panoptic seg-
mentation is able to provide predictions dealing with full RGB-D
images (a), RGB-only (b) or depth-only (c). Dashed lines indicates
a detached encoder.

Thus, a single model for handling RGB-D, RGB, and depth

data is helpful in practical applications. We investigate how

an encoder-decoder architecture with two encoders for the

RGB and depth cues can provide compelling results in indoor

scenes. Previous efforts showed how double-encoder archi-

tectures are effective in processing RGB-D data [29] [37],

but they target only semantic segmentation.

The main contribution of this paper is a novel ap-

proach for RGB-D panoptic segmentation based on a double-

encoder architecture. We propose a novel feature merg-

ing strategy, called ResidualExcite, and a double-encoder

structure robust to missing cues that allows training and

inference with RGB-D, RGB-only, and depth-only data at

the same time, without the need to re-train the model (see

Fig. 1). We show that (i) our fusion mechanism performs

better with respect to other state-of-the-art fusion modules,

and (ii) our architecture allows training and inference on

RGB-D, RGB-only and depth-only data without the need

of a dedicated model for each modality. To back up these

claims, we report extensive experiments on the ScanNet [3]

and HyperSim [32] datasets. To support reproducibility, our

code and dataset splits used in this paper are published at

https://github.com/PRBonn/PS-res-excite.
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Fig. 2: Our double-encoder network for RGB-D panoptic segmentation. RGB and depth images are separately processed, and their features
are merged at different output strides by the feature fusion modules (FF).

II. RELATED WORK

With the advent of deep learning, we witnessed a tremen-

dous progress in the capabilities to provide scene interpreta-

tion for autonomous robots. Kirillov et al. [21] define the task

of panoptic segmentation as the combination between se-

mantic and instance segmentation. The goal of this task is to

assign a class label to every pixel and to additionally segment

objects instances. Most of the approaches targeting panoptic

segmentation on images tackle it top-down, as they rely on

bounding box-based object proposals [15] [20]. Their goal

is to extract a number of candidate object regions [11] [17],

and then evaluate them independently. These methods are

effective but they can lead to overlapping segments in

the instance prediction. In this work, we follow bottom-up

approaches [2] [8] [33], not relying on bounding boxes but

operating directly at a pixel level.

The works mentioned so far use RGB images. Panoptic

segmentation is common also for LiDAR data, both in form

of range images [24] and point clouds [10]. However, when

considering RGB-D data, semantic segmentation [4] [31] and

instance segmentation [6] [18] are common, while panoptic

segmentation has received less attention so far [26] [42]. The

most common ways of elaborating RGB-D data rely on 3D

representations via truncated signed distance functions [18]

or voxel grids [13]. Few works go in the direction of using

directly RGB-D images. In our approach, we target panoptic

segmentation directly on RGB-D frames.

Double-encoder architectures are the most successful way

for processing 2D representations of RGB-D frames. They

allow to process RGB and depth cues separately with in-

dividual encoders and rely on feature fusion for combining

the outputs of the encoders [30] [37]. An alternative to the

direct exploitation of RGB and depth, proposed by Gupta et

al. [12], consist in a pre-processing of the depth to encode

it with three channels for each pixel, describing horizontal

disparity, height above ground and angle between the pixel’s

surface normal and the gravity direction. The core idea

of all these works, however, is that RGB and depth are

processed separately and fusion happens only at a later

point in the network, after the encoding part (late fusion).

Hazirbas et al. [14], however, show that feature merging at

different feature resolutions can enhance performance (early-

mid fusion). In contrast, we propose to use multi-resolution

merging at every downsampling step of the encoder.

Different merging strategies for features of data streams

are available. Summation [14] and concatenation [22] are the

earliest strategies, which have the limit of considering all fea-

tures without weighing them according to their effective use-

fulness. Newest efforts go in the direction of Squeeze-and-

Excitation modules [37] and gated fusion [43], which are two

different channel-attention mechanisms that aim to increase

the focus on features that are more relevant. Other works

exploit correlations between modalities to recalibrate feature

maps based on the most informative features [38] [40]. In our

work, we build on top of channel-attention mechanisms. We

propose a new merging mechanism called ResidualExcite, in-

spired by Squeeze-and-Excitation and residual networks [16],

that aims to measure the importance of features at a more

fine-grained scale.

Additionally, we leverage the double-encoder structure to

have a single model capable of training and inferring on

different modalities (RGB-D, RGB-only, depth-only). Multi-

modal models have been investigated in the past, but mostly

exploiting multiple “expert models” whose outputs are fused

in a single prediction, as in the work by Blum et al. [1].

III. APPROACH TO RGB-D PANOPTIC SEGMENTATION

Our panoptic segmentation network is an encoder-decoder

architecture that operates on RGB-D images and processes

RGB and depth data by means of two different encoders.

Encoders features are merged at different output strides,

and are sent to three decoders that restore the backbone

features to the original image resolution. The first decoder

targets semantic segmentation. The second decoder predicts

the location of object centers in the form of a probability

heatmap. The third decoder predicts an embedding vector for



each pixel of the image. Finally, a post-processing module

aggregates information coming from the last two decoders

to obtain instance segmentation in a bottom-up fashion.

Fig. 2 illustrates our proposed network architecture. The next

sections explain the individual parts of our method.

A. Encoders

Our panoptic segmentation network is based on two

ResNet34 encoders [16], which are fed with the RGB image

Irgb ∈ R
3×H×W and the depth image Idepth ∈ R

1×H×W ,

respectively. In both encoders, the basic ResNet block is

replaced by the Non-Bottleneck-1D block [34], which allows

a more lightweight architecture than the vanilla ResNet, since

all 3×3 convolutions are replaced by a sequence of 3×1 and

1×3 convolutions with a ReLU in between, while increasing

segmentation performance [37]. We merge features from the

two encoders at different output strides and project them

into the RGB encoder. We provide more details about our

merging strategy in Sec. III-B. After the last merging, the

resulting feature is processed by an adaptive pyramid pooling

module [44], which has the role of increasing the receptive

field of the network. From the RGB encoder, we extract

features at different output strides and use them in the

decoders by means of skip connections [35].

B. Feature Fusion

We perform feature fusion in the encoders at different

output strides. We merge features from the two encoders at

every downsampling step, and then send them to the RGB

encoder. The depth encoder processes depth features only, to

avoid processing the same features with both encoders.

We propose a novel way of merging features, inspired

by the Squeeze-and-Excitation module [19]. This module

produces a channel descriptor (squeezing operation), and

assigns to each channel a modulation weight that is finally

applied to the feature map (excitation). Our goal is to obtain

a global modulation weight rather than a channelwise weight,

as we believe that a more fine-grained reweighing of features

is crucial for effective segmentation results. Thus, we remove

the squeezing operation, and we add a residual connection.

This module, called ResidualExcite (see Fig. 3), is given by

Xrgb =Xrgb+λ
(

E(Xrgb)Xrgb+E(Xdepth)Xdepth

)

, (1)

where Xi ∈ R
Cd×Hd×Wd , i ∈ {rgb, depth} is the feature

coming from the respective branch, E(Xi) ∈ R
Cd×Hd×Wd

is the excitation module, which is a sequence of 1 × 1
convolutions followed by a sigmoid activation function, λ is a

(non-trained) parameter for weighing the excitation module

over the residual connection, and the subscript d refers to

the dimension of the features at the specific output stride in

which the merging happens. The RGB and the depth features

are both individually excited (meaning both excitation and

elementwise multiplication) and then summed, so that each

of them can be used separately in case the other cue is

missing. Finally, a residual connection adds Xrgb again.

RESIDUAL EXCITE

Excitation

Excitation

Residual Connection

Fig. 3: Detail of the ResidualExcite module. It elaborates the feature
maps and produces a novel one that encodes information from both
RGB and depth. Symbols

⊕
and

⊗
stand for elementwise addition

and multiplication, respectively.

C. Decoders

The decoders are composed of three SwiftNet-like mod-

ules [27], where we incorporate Non-Bottleneck-1D blocks,

and we extend the feature channel to 512 in the first module

and then we reduce it as the resolution increases. Finally,

two upsampling modules based on nearest-neighbor and

depthwise convolutions, that are less computationally expen-

sive than transposed convolutions [37], restore the original

resolution. Our model is composed of three decoders, for

semantic segmentation, center prediction, and embedding

prediction.

Semantic Segmentation. The semantic segmentation de-

coder has an output depth equal to the number of semantic

classes C, Isem ∈ R
C×H×W , and a softmax activation

function. It is trained with the usual cross-entropy loss Lsem

for one-hot encoded multi-label classification.

Center Prediction. The center prediction decoder has an

output depth of 1, Icen ∈ R
1×H×W , and a sigmoid activation

function to predict pixelwise probabilities of being a center.

It is optimized with a binary focal loss [25]:

Lcen =

{

−α (1− ŷ)τ log(ŷ) , if y = 1,

−(1− α) ŷτ log(1− ŷ) , otherwise,
(2)

where α and τ are design parameters and are fixed in all

experiments to 0.1 and 2, respectively.

Embedding Prediction. The third decoder of the

network predicts a Demb-dimensional embedding vector

Iemb ∈ R
Demb×H×W for each pixel in the image, and is

optimized with a composed hinged loss. The first term Latt

attracts embedding vectors of pixels belonging to the same

instance, the second term Lrep repel embedding vectors of

pixels belonging to different instances, and the third term

Lreg is a regularization term that avoids exploding entries:

Lemb = β1 Latt + β2 Lrep + β3 Lreg, (3)

Latt =
1

K

K
∑

k=1

1

Pk

Pk
∑

p=1

[

‖êk − êp‖−δa
]+

, (4)

Lrep =
1

K(K − 1)

K
∑

k1=1

K−1
∑

k2=1

k1 6=k2

[

δr − ‖êk1
− êk2

‖
]+

, (5)



Lreg =
1

K

K
∑

k=1

‖êk‖, (6)

where êi ∈ R
Demb is the unbounded logit predicted by the

decoder, K is the number of instances in the image, Pk is the

number of pixels of the specific instance, [·]+ corresponds

to max(0, ·), and δa and δr are thresholds for attracting

and repelling the embedding vectors, respectively. To speed

up computations, we compute Latt only between pixels

belonging to an instance and their corresponding center, and

Lrep only among centers of different instances. Similarly, we

regularize only the vectors of the centers.

We optimize the network with a panoptic loss that is a

weighted sum of the previously-defined terms:

Lpan = w1 Lsem + w2 Lcen + w3 Lemb. (7)

D. Post-processing

Our post-processing module computes the instance mask

based on the output of the three decoders. Since the center

prediction decoder usually outputs blobs around the desired

center, we perform a non-maximum suppression operation in

order to reduce each blob to a single pixel, filtered by the

semantic prediction to ensure consistency.

In particular, centers are first filtered by the semantic

prediction Isem to avoid having centers belonging to stuff

classes, which do not have any instance. Then, pixels that

have a probability of being a center lower than a thresh-

old δcen are discarded. Next, for each blob, we extract the

pixel with the highest probability of being a center. A blob B
is defined as the set of pixels belonging to the same semantic

class and having a similar embedding vector. Referring to Ω
as the set of pixels who are predicted as centers in Icen, i.e.,

Ω = {p | Icen(p) ≥ δcen}, a blob is defined as

B =
{

pi, pj ∈ Ω | Isem(pi) = c ∧ Isem(pj) = c

∧ ‖êpi
− êpj

‖< δemb, i 6= j
}

,
(8)

where c is a specific semantic class, δemb is a threshold for

aggregating embedding vectors, and pi, pj are generic pixels.

After the center extraction, we perform an agglomerative

clustering operation to group pixels to centers according to

the Euclidean distance in the embedding space and semantic

class. For each center, we compute its distance in the embed-

ding space from all pixels of the same semantic class. This

operation is less computationally intensive than the similarity

matrix between all pixels of the image, and motivates the use

of object centers. Finally, we assign the pixel to a center if

their distance in the embedding space is below a threshold θ.

The use of the semantic segmentation prediction enforces

consistency and avoids grouping pixels belonging to different

semantic classes in the same object.

E. Robustness to Missing Inputs

Since we process RGB and depth with two separate

encoders, it is possible to feed the network with partial

information, i.e., without either RGB or depth, and freeze

the part corresponding to the missing data. This can be done

also at training time, with a switching mechanism that freezes

gradients if no input is provided to one branch. In this way,

the frozen encoder does not contribute to the forward and

backward pass, and the network can train at the same time

with complete RGB-D, RGB-only, or depth-only images.

Furthermore, the network is able to infer on different data

without the need for re-training. Feature merging with partial

data is not an issue, since the remaining cue can still be

excited (or squeezed and excited) and processed.

We train the full model with a probability of dropping data

(RGB or depth), equal to pdrop. This means that the network

can train either with the full RGB-D data or not. If data is

dropped, then no input is sent to the corresponding encoder,

which we freeze. Additionally, we use an adaptive sampling

mechanism to choose what needs to be dropped: in particular,

if one cue has been dropped more times than the other, its

probability of being dropped in the next iteration is reduced.

This helps having a more balanced dropping mechanism and

alleviates the problem of dropping always the same modality.

IV. EXPERIMENTAL EVALUATION

We present our experiments to show the capabilities of our

method and compare it with other fusion methods common in

the literature. Furthermore, we show performance of models

trained with partial data.

A. Experimental Setup

Datasets and Metrics. We test our method on the vali-

dation sets of two datasets: ScanNet [3] and HyperSim [32].

ScanNet is composed of 2.5M real-world images organized

in 1,513 scenes. HyperSim is a photorealistic synthetic

dataset of indoor scenes, and it is composed of 77.4K

images organised in 461 scenes. For both datasets, we do not

consider stuff classes (wall, floor) for instance segmentation.

For the center prediction, we pre-process the instance

masks of both datasets to extract a center ground truth that is

inside the object mask. We consider this to be more effective

than computing the center of the associated bounding box,

which can fall outside the object mask and the segmentation

mask, for example in the case of an isolated concave object.

We evaluate our method by means of the panoptic

quality (PQ) [20] and the mean intersection over union

(mIoU) [7] over all classes for semantic segmentation.

Training details and parameters. In all experiments, ex-

cept when explicitly specified, we use the one-cycle learning

rate policy [39] with an initial learning rate of 0.004. We

perform random scale, crop, and flip data augmentation, and

optimize with AdamW [23], for 200 epochs. The batch size

is set to 32. Additionally, we set Demb = 32 as embedding

dimension, δa = 0.1, δr = 1, δemb = 0.5, δcen = 0.5,

θ = 0.5, and λ = 1.5. Loss weights are set to w1 = 1,

w2 = 0.1, w3 = 10, β1 = 1, β2 = 1, β3 = 0.001.

B. Panoptic Segmentation on RGB-D Images

The first set of experiments evaluates the performance

of our proposed method, and offers comparisons to other

architectures common in the literature. We base our work on

ESANet [37], which is a double-encoder network for RGB-D



Fig. 4: Experimental results on ScanNet. Our approach achieves superior segmentation results when compared to the baselines.

Fig. 5: Experimental results on ScanNet. Our approach achieves superior segmentation results when compared to other fusion modules.

Fig. 6: Results when doing inference on RGB-only after training with missing inputs. The bigger pdrop, the better the performance.

Method Dataset PQ mIoU

RGB Panoptic DeepLab [2] ScanNet 30.11 43.12
RGB-D Panoptic DeepLab ScanNet 31.43 45.45
ESANet [37] with Addition ScanNet 35.65 51.78
ESANet [37] with SE [19] ScanNet 37.09 54.01

Ours with CBAM [41] ScanNet 39.11 58.11
Ours with ResidualExcite ScanNet 40.87 58.98

RGB Panoptic DeepLab [2] HyperSim 26.10 40.45
RGB-D Panoptic DeepLab HyperSim 28.56 41.08
ESANet [37] with Addition HyperSim 32.18 50.74
ESANet [37] with SE [19] HyperSim 35.87 54.07

Ours with CBAM [41] HyperSim 37.02 54.21
Ours with ResidualExcite HyperSim 38.67 55.14

TABLE I: Performance of the different panoptic segmentation
methods. Best result in bold.

semantic segmentation on images. To use it as a baseline for

panoptic segmentation, we expand ESANet with the decoders

for the center prediction and embedding prediction. Notice

that ESANet leverages Squeeze-and-Excitation as a fusion

strategy, but reports in the paper also fusion by addition

that simply sums up features coming from the two encoders

and projects them into the RGB encoder. Here, we use

both variants. Additionally, we use another fusion module

as baseline, CBAM [41], which infers attention maps along

two separate dimensions, channel, and spatial. Furthermore,

we also compare against a single-encoder architecture that

process the RGB-D image as a four-channel input signal. For

that, we adapted Panoptic DeepLab [2] to process images

with four channels, and we fed the model with a 4D tensor

that is the concatenation of the RGB and the depth images.

We compare our approach to such methods since we focus

on image-like data, without relying on 3D representations

such as truncated signed distance fields or point clouds.

Results are reported in Tab. I, qualitative results are shown in

Fig. 4 and Fig. 5. Our reimplementation of Panoptic DeepLab

shows inferior performance when compared to ESANet and

our approach. We also report numbers from the vanilla

implementation of Panoptic DeepLab (called RGB Panoptic

DeepLab in the Table) that does not make use of the depth.

Interestingly, the performance of the RGB Panoptic DeepLab

is close to the one of the RGB-D re-implementation, that sim-

ply processes an input with four channels rather than three.

This suggests that processing depth as an additional input

channel does not add much information, while a separate pro-

cessing via a second encoder is more effective for such a task.

The ResidualExcite module helps segmentation performance,

and outperforms other merging strategies such as CBAM and

Squeeze-and-Excitation (ESANet + instance segmentation).

Fusion by addition shows inferior performance, which is an

expected result as it processes all features without weighing

them according to their effective usefulness. This experiment

indicates that our more fine-grained weighing mechanism,

which has effect on each single entry of the encoder fea-

ture rather than each channel, enhances performance of the

downstream task. Additionally, our network provides end-to-

end predictions at 10 Hz, that need to be post-processed to

obtain the final instance segmentation mask.



Method Dataset mIoU

AdapNet++ [40] ScanNet 54.61
FuseNet [14] ScanNet 56.65
SSMA [40] ScanNet 66.13

Ours (full model) ScanNet 58.98
Ours (semantic) ScanNet 69.78

TABLE II: Performance of different semantic segmentation models
on the ScanNet dataset. Best result in bold.

RGB-D RGB-only Depth-only

pdrop PQ mIoU PQ mIoU PQ mIoU

0 40.87 58.98 9.12 21.13 12.54 24.57
0.25 31.12 44.55 20.12 34.83 21.18 35.14
0.5 30.73 42.86 25.61 39.18 26.74 38.87
0.75 26.81 40.07 27.48 39.56 28.18 39.45

TABLE III: Performance of the model when dropping either RGB
or depth with different probability. Best result in bold.

To empirically validate our architecture design, we com-

pare it with some state-of-the-art models from the ScanNet

benchmark for semantic segmentation [14] [40]. We use both

our full model and its task-specific reduction, in which the

decoders for center and embedding prediction are cut out

in order to do semantic segmentation only. Table II shows

that even if our full model has weaker performance, our task

specific model outperforms the baselines. Note that some

methods higher in the benchmark rely on multiple frames as

input, and thus cannot be directly compared to our approach.

C. Experiments on Robustness to Missing Inputs

The second set of experiments backs up our claim that our

approach can train and infer on partial data, such that the

network learns to deal with missing RGB- or depth-frames.

We test different values for pdrop: 0.25, 0.5, and 0.75. This

means that the network will drop either the RGB frame or

the depth frame according to the specified probability. If

dropping happens, we choose which cue to drop according

to the adaptive sampling mechanism mentioned in Sec. III-

E. This strategy gives a better performance than random

sampling, which is therefore not reported here. Tab. III shows

performance for inference on RGB-D, RGB-only, and depth-

only data. All models produce inferior segmentation results

than the model that does not drop any frame (same model

discussed above), when doing inference on full RGB-D

frames. However, its performance drops substantially when

doing inference on partial data, as the network was never

trained with missing cues. Additionally, we notice how

dropping frames more often makes the model better for doing

inference on partial data, since the network trained more with

missing cues. On the contrary, low values of pdrop bring poor

performance when handling partial data, because the network

was mainly trained with both, RGB and depth. The model

trained with pdrop = 0.5 is the best compromise to achieve

satisfactory results both on RGB-D, RGB-only, and depth-

only, even without reaching the performance of the RGB-D

model. Qualitative results are shown in Fig. 6.

All experiments described in Sec. IV-C are done with a

batch size of 4 and an initial learning rate of 0.001. Due to

the missing inputs, the training procedure is less stable and

RGB D SE E RE PQ mIoU

X 25.63 38.91
X 28.89 41.01

X© X 35.65 51.78
X© X X 37.09 54.01
X© X X 38.73 55.57
X X© X 38.80 56.67
X© X X 40.87 58.98

TABLE IV: The first two lines refer to RGB- and depth-only.
Then, we show double-encoder networks with addition (RGB + D),
Squeeze-and-Excitation (SE), ExciteOnly (E) and ResidualExcite
(RE). We use X© to indicate which branch processes fused features.

thus required a smaller learning rate. We use ResidualExcite

for merging; experiments are performed on ScanNet only.

D. Ablation Studies

In this last section, we provide ablations to show the

improvements provided by the fusion strategy. We perform

all ablations on the ScanNet dataset only.

First, we analyze the ResidualExcite and investigate the

effect of the residual connection. Without it, the excitation

module (ExciteOnly) still provides an entrywise reweighing

of the feature. Experiments show that this is already enough

to ensure superior performance with respect to other base-

lines, but the residual connection gives further improvements,

see Tab. IV. Additionally, in our case, fusing in the RGB

encoder is more effective than fusing in the depth encoder.

In the same table, we compare the performance of the

full model reductions in which a single encoder is used.

We test panoptic segmentation on RGB-only and depth-only

data. The results are clearly inferior to the double-encoder

models. Interestingly, depth-only gives better results than

RGB-only. This is probably due to the fact that some scenes

have challenging lighting conditions, and some objects are

hard to recognize in the RGB image. Such information is not

lost in the depth image. Also, this suggests that geometric

cues may be more relevant than color information when it

comes to object recognition for segmentation.

V. CONCLUSION

In this paper, we presented a novel approach for panoptic

segmentation on RGB-D images based on a double encoder

architecture with intermediate feature merging. Our method

exploits the inner structure of the neural network to enable

training and inference when cues are missing using the same

model and without the need for retraining. We implemented

and evaluated our approach on different datasets and pro-

vided comparisons with other existing models and supported

all claims made in this paper. The experiments suggest that

our more fine-grained reweighing of features is crucial for

effective segmentation results. Additionally, models trained

with partial data achieve inferior performances on RGB-D

segmentation when compared with full models, but they

work better when inferring on partial data.

ACKNOWLEDGMENTS

We thank Andres Milioto and Xieyuanli Chen for their

constructive feedback and useful discussions.



REFERENCES

[1] H. Blum, A. Gawel, R. Siegwart, and C. Lerma. Modular Sen-
sor Fusion for Semantic Segmentation. In Proc. of the IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), 2018.
[2] B. Cheng, M.D. Collins, Y. Zhu, T. Liu, T.S. Huang, H. Adam, and

L. Chen. Panoptic-DeepLab: A Simple, Strong, and Fast Baseline
for Bottom-Up Panoptic Segmentation. In Proc. of the CVF/IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), 2020.
[3] A. Dai, A. Chang, M. Savva, M. Halber, T. Funkhouser, and

M. Nießner. ScanNet: Richly-Annotated 3D Reconstructions of Indoor
Scenes. In Proc. of the IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2017.
[4] A. Dai and M. Niessner. 3DMV: Joint 3D-Multi-View Prediction for

3D Semantic Scene Segmentation. In Proc. of the Europ. Conf. on

Computer Vision (ECCV), 2018.
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