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Abstract— Interactions with articulated objects are a chal-
lenging but important task for mobile robots. To tackle this
challenge, we propose a novel closed-loop control pipeline,
which integrates manipulation priors from affordance estima-
tion with sampling-based whole-body control. We introduce
the concept of agent-aware affordances which fully reflect the
agent’s capabilities and embodiment and we show that they
outperform their state-of-the-art counterparts which are only
conditioned on the end-effector geometry. Additionally, closed-
loop affordance inference is found to allow the agent to divide
a task into multiple non-continuous motions and recover from
failure and unexpected states. Finally, the pipeline is able to
perform long-horizon mobile manipulation tasks, i.e. opening
and closing an oven, in the real world with high success rates
(opening: 71%, closing: 72%).

I. INTRODUCTION

In the future, autonomous mobile robots could relieve

humans of tedious, repetitive manual tasks in a wide variety

of environments like hospitals, homes or laboratories. Many

daily tasks require interaction with articulated objects, for

example to open the door of a dishwasher. This is especially

challenging for a robotic agent, because of the complex

system dynamics caused by the object’s degrees of freedom

and kinematic constraints.

A common approach is to estimate the kinematic and se-

mantic properties of articulated objects from visual data [1]–

[4] and leverage this information for planning and control [5],

[6]. This two-staged approach often requires heuristics, for

example defining the grasping point on the handle, limiting

the flexibility to deal with unseen articulation types and

object geometries. A more generic approach using affor-

dances, i.e. where and how an agent can interact with an

object, was recently explored [7], [8]. Given a point cloud

of an articulated object, they use neural networks to predict

point-wise interaction scores (actionability), which are used

as priors for a downstream robotic controller. While these

approaches show promising initial results, they neglect that

affordances are always dependent on the agent’s capabilities,

which are defined by the hardware and the controller. Instead,

the state-of-the-art models are trained on a disembodied

gripper, disregarding the robot kinematics and joint limits.

This can lead to the predictions of motions that are infeasible
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Fig. 1: Real-world experiment of opening an oven in two motions.
a) & c): Estimated actionability map where the red cross represents
the selected interaction point. b) The first interaction pose becomes
unfavorable, therefore an update is triggered. d): Successful task
completion after the second interaction.

for the real robot. Furthermore, these pipelines query the

affordance module only once and then keep the interaction

pose and planned trajectory fixed. Due to this open-loop

perception and planning setup, they cannot perform long-

term tasks requiring a change of interaction pose when the

robot reaches kinematic or joint limits.

To overcome these limitations, we propose a novel closed-

loop pipeline combining agent-aware affordance perception

with sampling-based whole-body control. Concretely, this

work deals with the non-prehensile manipulation of artic-

ulated objects with one degree of freedom using a mobile

manipulator equipped with a single, fixed cylindrical finger.

Taking inspiration from the Where2Act framework [7], we

train an artificial neural network to estimate point-level affor-

dances from visual data, indicating the success likelihood for

interactions at each point. The pose proposal with the highest

affordance score is passed on to a sampling-based controller

(based on [9], [10]), which then iteratively determines the

best interaction trajectory. This setup is well suited for

non-prehensile manipulation since the interaction location

and trajectory are continuously adapted based on real-time

feedback, enabling adaptive and robust task execution. In
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contrast to previous end-effector-aware approaches, we train

our affordance inference network with data collected using

the full model of our target robot platform, making our

predictions fully agent-aware. Additionally, unlike previous

approaches with a fixed interaction pose, our pipeline is

able to re-evaluate the affordance model at any point during

task execution, which allows the robot to execute long-term

tasks where a change of interaction pose is required. In

this work, we show in ablation experiments that agent-aware

training significantly increases the quality of pose proposals,

and that allowing the agent to change the interaction pose

during the task increases the robustness of the integrated

affordance-control pipeline. Additionally, we benchmark our

method against VAT-Mart [8] as a state-of-the-art work and

we perform experiments in the real world (Fig. 1), reaching

a success rate of more than 70% for both fully opening

and closing an oven door using a mobile manipulator. In

summary, our contributions are:

• We formulate the concept of agent-aware object affor-

dances which are conditioned on the full shape and

kinematics of the robot.

• We propose a novel closed-loop manipulation frame-

work that combines the concept of visual affordances

with a sampling-based controller.

II. RELATED WORK

Control strategies for manipulating articulated objects:

A common approach for the manipulation of articulated ob-

jects is to extract object properties like part segmentation and

joint kinematics from visual data [1]–[4], [11] and use this

to plan an interaction trajectory [12]–[14]. Mittal et al. [5]

recently successfully used this approach by implementing a

Model Predictive Controller (MPC) to track the feed-forward

trajectory plan. However, MPC struggles with discontinuities

caused by contact dynamics, such that a simplification of

the problem is required, e.g. splitting the task into first

achieving a stable grasp at a fixed interaction position and

then executing a predefined motion based on known artic-

ulation kinematics. To alleviate these limitations, sampling-

based control has recently emerged, allowing a more task-

specific and complex interaction representation [9], [15],

[16]. In previous work by Rizzi et al. [10], a sampling-

based controller was successfully applied as a whole-body

closed-loop controller for the non-prehensile manipulation

of articulated objects. However, to decrease the size of the

sampling space, a fixed end-effector interaction pose still has

to be provided a priori for each object.

Affordances for manipulating articulated objects: An

affordance is defined as the ability of an agent to perform

an action with a target object in a given environment [17],

[18]. In robotics, the concept of affordances is commonly

applied either on an object-level, e.g. a dishwasher is open-

able [19], [20], or on a point-level to encode information

about the object geometry and grasp possibilities [21]–[24].

In the current literature, affordances are usually learned

from labeled visual data [25]–[27] or from self-supervised

interactions [19], [20], [24], [28]. Recent works have applied

this concept to the manipulation of articulated objects. VAT-

Mart [8] and Where2Act [7] propose frameworks which learn

affordances for robotic manipulation from interactions gen-

erated in a photo-realistic simulator [29]. A network is then

trained to infer interaction points and trajectory proposals for

downstream manipulation tasks from visual data. However,

these approaches generate training data by simulating the

interaction between a disembodied end-effector and a unit-

sphere scaled object. This results in affordances that are

not only unaware of the kinematics and control of the

actual robot platform, but also of the realistic object size.

Consequently, the trajectories derived from these approaches

might be infeasible in real life, e.g. due to joint limits or

collisions of the arm with the object. Additionally, they only

query the visual model at the beginning of the interaction

in an open-loop fashion, keeping the planned grasp location

and trajectory constant during the interaction. UMPNet [30]

on the other hand proposed a closed-loop affordance-based

manipulation framework that can update the interaction di-

rection during task execution. However, it still uses a fixed

interaction point, determined at the start of the interaction

using only end-effector-aware (agent-agnostic) affordances.

III. PROBLEM FORMULATION

We consider a physical system consisting of a mobile ma-

nipulator and an articulated object which is composed of two

rigid bodies connected by a rotational or translational joint.

We define the state x = [q,o, q̇, ȯ] as the configurations

of the robot and object and their time derivatives, where q

consists of the position of the mobile base relative to the

object as well as the joint angles of the manipulator. The

robot kinematics and the object geometry and articulation

are assumed to be provided a priori. Given a desired object

configuration o∗, the point cloud from the robot’s point

of view C and the current state observation x, the overall

objective is to find a robot control policy that generates joint

velocity commands u such that o = o∗.

IV. AGENT-AWARE AFFORDANCE LEARNING

We propose a novel control pipeline combining an agent-

aware affordance network with a sampling-based whole-body

controller (Fig. 2). Given an object point cloud C, from

which the movable object part is extracted by applying a

segmentation mask, and target configuration o∗, we use an

affordance neural network to select a favorable end-effector

interaction pose (point p ∈ R
3 and orientation R ∈ SO(3)).

The interaction pose is then used by the sampling-based

controller κ to generate joint velocity commands u = κ(x |
o∗,p,R). When the interaction fails or stops leading to any

improvement of o, a task scheduler triggers a pose update

as described in Section IV-B.

A. Affordance-based Pose Module

Pose inference: Let J(x0:N , κ(x0:N−1) | o∗) be a

reward function that, given the target object configuration

o∗, maps a trajectory of system states {x0:N} and controller

inputs {u0:N−1} to a binary reward value. Given an object



Fig. 2: Block diagram of the control pipeline. The pose module uses affordance estimation to choose the optimal end-effector reference
pose. The sampling-based controller generates velocity commands to interact with the object. The task scheduler can trigger an update of
the interaction pose if required.

and its target configuration o∗, we define the affordance A

of an interaction pose (p,R) as the expected value of J

over all the state-input trajectories induced by the controller

κ(x | o∗,p,R) from initial state x0. Inferring the optimal

interaction pose by maximizing the affordance function A is

impractical, as the set of all possible interaction positions and

orientations is extremely large. We therefore follow [7], [8]

and define two auxiliary functions. The orientation proposal

function Q generates end-effector orientation proposals given

an interaction point. The actionability function α models

the point-wise expected affordance A over a distribution

of interaction orientations. At test time, we first select

the interaction point that maximizes α. We then generate

multiple orientation proposals and score their affordance.

Finally, the highest-scoring pose proposal (p,R) is selected

and passed on to the sampling-based controller.

Network architecture: We use a neural network based

on [7] to learn the functions required by the optimization

problem, namely affordance A, orientation proposal Q and

actionability α. The network architecture, shown in Fig. 3,

combines a PointNet++ [31] feature encoder with three

Multilayer Perceptron (MLP) decoding heads, one for each

function. All three networks take as input the point position

p, its feature vector fp and the target object configuration

o∗. The orientation proposal module additionally takes a

sampled Gaussian noise vector z ∈ R
10 ∼ N (0,1) as input

to generate proposals R which are then passed on as an input

to the affordance prediction module.

Data collection: The training data is collected in a

simulation setup where we simulate the complete control

pipeline as well as the kinematic chain, collision bodies

and dynamics of the target robot platform in order to create

agent-aware affordances. A baseline agent samples a random

interaction pose (p,R) on the movable part of the object,

where the orientations are sampled only within a 45◦ cone

of the surface normal at point p (based on [8]). Given the

sampled pose and the desired configuration o∗, the sampling-

based controller attempts to interact with the object for 10s.

A binary reward J rates the interaction as successful if the

object configuration was changed by more than 5◦ towards

Fig. 3: The pose module, based on [7], combines a PointNet++
[31] feature encoder with three MLP decoding heads, outputting
actionability α, orientation proposal Q and pose affordance A.

the target o∗. Finally, we balance the dataset to contain the

same number of successful and unsuccessful samples. One

advantage of using the sampling-based controller to generate

training data is the relatively high rate of successful interac-

tions (13.6%), which makes it much more data efficient than

first having to train a control policy (as done in [8]).

Training and losses: Given the point cloud and the

interaction sample (p,R,o∗, J), we train the components of

the pose module jointly where the affordance module learns

to predict the reward realization J using a binary cross-

entropy loss, while the orientation proposal module uses

the mean cosine similarity loss on quaternion predictions.

The actionability module is trained on an L1 loss, where

the ground truth actionability for a given pose proposal

can be calculated using predictions from the affordance

and orientation modules. We use an Adam optimizer and

employ learning rate scheduling and early stopping to ensure

convergence. Training a network takes around 3 hours on a

low-grade GPU (NVIDIA GTX 1050 Ti with 4 GB RAM).

B. Control Pipeline

Sampling-based controller: The sampling-based con-

troller uses a physics engine to forward simulate the system

dynamics of the robot and object to iteratively refine the

motion trajectory [10]. At every time step, it samples multi-

ple robot joint velocity references u around the current best

guess and simulates the resulting system dynamics for a time



horizon of 1s. The best trajectory is then selected based on

a cost function, which is made up of multiple components.

The object cost encodes the offset from the target o∗, the

collision cost punishes robot-object collision, the joint limit

cost and the arm reach cost prevent mechanically unreachable

configurations. Finally, the pose reach cost is defined as the

distance between the end-effector and the reference pose

(p,R), which is required to make the optimization problem

feasible. A low-level proportional-integral controller then

converts the velocity reference u to the executed joint torques

commands.

Task scheduler: To increase the robustness of the sys-

tem, we implement a closed-loop affordance inference setup,

allowing the robot to change its interaction pose when the

current one is no longer favorable. In practice, the task

scheduler triggers a pose update whenever the object state

cost stagnates. To update the pose, the robot moves to a

configuration from where it can observe the full object,

records a point cloud, segments it and passes it through the

pose module to obtain the new interaction pose.

V. EXPERIMENTS

To evaluate the performance of our pipeline, we conducted

three different experiments in simulation and additionally

validated our approach in real life. For training, we collect

for each task 12000 simulations with eleven different object

models from the PartNet-Mobility dataset categories oven

and dishwasher, which both have a revolute joint [32].

First, we compared affordances conditioned only on the

end-effector (as in [7], [8]) against affordances conditioned

on the full robot. Second, we evaluated the advantage of

allowing the agent to update the interaction pose when the

current one is no longer advantageous, i.e. split one task into

multiple non-continuous motions. These two experiments

were performed with seven unseen object models from the

training categories since they are especially challenging in

terms of reach and collision and are therefore well suited to

study the advantages of our method. Finally, we show that

our approach is also capable of generalizing to unseen object

categories and articulation types. To this end, we tested our

pipeline on 140 object models from the categories safe, table

and washing machine containing both revolute and prismatic

joints and compare it to VAT-Mart [8] as a state-of-the-art

benchmark.

A. Agent and Environment

The robot platform consists of a seven degree-of-freedom

manipulator mounted on a mobile base. The manipulator

hand is equipped with a single, fixed cylindrical finger. One

of the advantages of this simple finger design is that it

allows the physics engine RAISIM to simulate the contact

dynamics, which is a computationally demanding task [33],

smoothly in real-time with a simulation timestep of 0.0015 s.

To generate the pointclouds, the robot and the object are

rendered in the SAPIEN environment [29], where the object’s

initial position and scale are sampled uniformly at random

within predefined, category-specific bounds.

B. Baselines

As a minimum baseline, we employ the same random

agent used during training for data collection. To evaluate the

importance of agent-aware affordances, we compare against

a purely end-effector-aware baseline where we collected the

training data with a disembodied, freely moving gripper

initialized directly at the interaction pose and thus ignoring

the issue of reach. This is similar to the affordance-learning

paradigm in Where2Act [7]. As an additional baseline, we

enhance the end-effector-aware network with a reachability

filter using a Jacobian-based inverse kinematics (IK) check

as well as with a robot-object collision filter. These filters

are implemented such that each interaction pose proposed

by the end-effector-aware network has to pass the feasibility

check before being executed. Next, to evaluate the effect

of enabling a change of interaction pose, we created for

both the end-effector-aware and the agent-aware network one

version where the pose stays fixed during the interaction and

a closed-loop setup that allows pose updates.

C. Results

Agent-aware vs end-effector-aware: We first evaluate

the quality of the proposed agent-aware interaction poses

with a simplified version of the pipeline which keeps the

interaction pose fixed. As in [7], we report the sample success

rate as the percentage of interaction poses creating movement

towards the target o∗, i.e. |∆o| ≥ 5◦, as well as the sample

reach rate defined as the percentage of pose references that

are reachable by the agent. The considered tasks are to open

or close articulated objects from the testing dataset using the

full robot model. Over the 500 trials of each task, the initial

object configuration o0 is such that half of the trials start

with the object fully closed or fully open (for the open and

close tasks, respectively), the other half start with the object

open to an angle sampled randomly over the full joint range.

In the open task, both networks learned to interact with

a similar set of points (Fig. 4a), leading to similar average

performance (Table I). In the close task on the other hand,

while the end-effector-aware network considers the entire

outer surface of the door to be actionable, the agent-aware

network strongly prefers interaction points close to the

top edge (Fig. 4b). As the end-effector-aware network was

trained on a disembodied gripper, it often predicts interaction

poses that are unreachable for the full agent due to kinematic

or collision constraints. This results in a significantly lower

reach and success rate compared to the agent-aware version.

Table I shows that even though the feasibility checks

progressively improve the reachability and success rate of

poses, the performance is still lower than for our proposed

agent-aware network. From this experiment we conclude

that there is no simple heuristic filter that can restore the

agent-awareness a posteriori. The failure cases of the agent-

aware model on the other hand are mostly due to suboptimal

actionability predictions of the network, i.e. it proposes

poses that can be reached but do not result in successful

interactions. Additionally, we compared multiple network

instances trained with different random seeds and found that



Fig. 4: a) Open task: both networks learn to interact with a similar
set of points. b) Close task: the agent-aware network strongly
prefers reachable points while the end-effector-aware network,
which was trained on a disembodied gripper, also predicts points
on the door surface which are unreachable for the full agent.

OPEN s. success r. s. reach r.

Random 15.5% 68.5%
EE-aware 91.9% 99.8%
Agent-aware 92.1% 99.9%

CLOSE s. success r. s. reach r.

Random 21.0% 61.5%
EE-aware 38.5% 54.2%
EE-aware + IK check 51.7% 65.0%
EE-aware + IK + collision check 59.5% 76.6%
Agent-aware 76.1% 92.0%

TABLE I: Sample success rate and sample reach rate using the full
robot model for interaction trials of the open and close task. We
compare our agent-aware network to a random baseline, the end-
effector-aware network (EE-aware) and enhanced versions of the
EE-aware network combined with an inverse kinematic (IK) and a
collision check.

while stochasticity has a visible effect on the affordance

map, the resulting performance is consistent across networks.

In general, we observe that the sampling-based controller

provides a certain robustness against small errors of the

predicted interaction pose, as it locally adapts the pose while

minimizing the controller cost.

Closed-loop pose update: In this experiment we evalu-

ate the performance on the full opening (o0 = 0◦,o∗ = 90◦)

and closing (o0 = 90◦,o∗ = 0◦) tasks and report the task

success rate. Over 1000 trials we compare our closed-loop

pipeline, which allows the robot to change its interaction

pose during the task, with an ablated fixed pose version.

The agent-aware closed-loop pipeline achieves an extremely

good task success rate of 88.6% on both open and close

tasks (Table II). We observe two advantages of the closed-

loop setup: Firstly, when an initially successful interaction

pose becomes infeasible at an intermediate state, the task

scheduler triggers an interaction pose update. Secondly, when

the sampling-based controller is unable to perform the task at

all by interacting with the current reference pose, the agent

is able to recover by trying again at a different reference

pose. In this simulated setup, we predominantly observed

OPEN CLOSE
Agent-aware EE-aware Agent-aware EE-aware

Closed-loop 88.6% 76.6% 88.6% 64.3%
Fixed pose 83.6% 64.7% 69.2% 44.1%

TABLE II: Task success rate of the agent-aware and the end-
effector-aware pipeline for the long-horizon open and close tasks.
While the closed-loop setup improves the performance for both
pipelines, the agent-aware version clearly outperforms its ablation.

the second effect, because the sampling-based controller is

able to locally adapt the interaction pose such that the task

can be fulfilled in one motion, e.g. by sliding or rotating.

Finally, the closed-loop setup also improves the results of

the end-effector-aware network, but it is still outperformed

by the agent-aware network.

Generalization capabilities: To benchmark against

VAT-Mart [8], we evaluated our pipeline on their test ob-

jects (safe, table and washing machine) and use their task

definition which is to sample the target o∗ and the initial

object configuration o0 randomly over the full joint space.

Qualitative results in Fig. 5 show that our pipeline learned

interaction strategies that generalize well to unseen object

categories despite the limited object variability seen during

training. Table III shows that we outperform the VAT-Mart

benchmark in all tasks and categories, even when only

using a fixed interaction pose. Our pipeline is explicitly

designed to profit from available information about the object

and the robot which VAT-Mart does not use, namely the

collision shape and articulation model as well as the real-

time feedback of robot joints and articulation angle which

are required by the controller. For our targeted service

robotics applications, object CAD models are often readily

available [34], while generating novel models would also

only require a one-time effort.

close door open door close drawer open drawer

VAT-Mart [8] 36.5% 14.3% 38.3% 31.1%
Ours (Fixed Pose) 44.0% 49.0% 68.0% 46.5%
Ours (Closed-loop) 65.8% 66.7% 80.5% 59.1%

TABLE III: Task success rate, defined according to [8] as within a
tolerance of 15% of the task, of our framework on unseen object
categories compared to an ablated fixed pose version of our method
and the VAT-Mart benchmark.

D. Real-world experiments

We deployed our pipeline on a mobile manipulator inter-

acting with an oven (Fig. 1). Collision bodies and articulation

type of the oven are provided to the controller a priori, while

the articulation joint angle is obtained by integrating the

angular velocity measurement of an IMU mounted on the

back of the oven door. The pose of the robotic platform is

tracked by an OptiTrack motion capture system and the point

cloud data is collected from an onboard Azure Kinect sensor.

The reflective glass surface of the oven door was covered to

make it visible to the RGB-D camera. For part segmentation,

the Iterative Closest Point (ICP) algorithm is used to match

the real-world point cloud to the point cloud rendered in

simulation, allowing a projection of the segmentation mask.



Fig. 5: Qualitative analysis of the interactions with different articulated objects. Each interaction block shows from left to right: The RGB
image, the predicted actionability map, the robot interacting with the object and the full trajectory of the end-effector (shown in green).

The closed-loop pipeline was tested over 25 trials of both

the open (o0 = 0◦, success if oN ≥ 75◦) and close (o0 ≥
75◦, success if oN ≤ 2◦) tasks, where the joint limit of

the real oven was at 85◦. In Table IV, real-world results

are compared to simulation trials with the same setup and

testing object. We report the task success rate (task s. r.),

the average number of interaction attempts (n. int.) and the

average number of successful motions (|∆o| ≥ 5◦) needed

to complete a task (n. mot.).

Results: The network is able to produce reasonable

actionability maps and interaction poses from real-world

point cloud data (Fig. 1 and supplementary video). For the

close task, the behavior transfers very well from simulation

to the real world: The robot is able to complete the task

72% of the time and often in one motion (Table IV). In

the open task, unlike in simulation, the real robot typically

needs multiple attempts to slide the finger into the handle

due to errors introduced by the state estimation and model

mismatches. Once the end-effector is placed such that it can

exert enough force, it opens the door to an intermediate

state. This end-effector pose usually becomes unfavorable

at a certain articulation angle (as seen in Fig. 1b), such that

a pose update is triggered and the robot uses a second and

sometimes third motion to fully open the door. The recovery

capabilities of the closed-loop pipeline are therefore essential

to overcome the described sim-to-real gap, such that we

achieve an overall task success rate of 71% for opening.

VI. CONCLUSIONS

We introduced a novel closed-loop manipulation pipeline

combining point-level affordance inference from visual data

with whole-body control. The pipeline is based on sampling-

based control, using affordances to estimate the end-effector

interaction pose. Current state-of-the-art methods only con-

dition affordance predictions on end-effector geometry. In

contrast, we show that our agent-aware network is able

OPEN task s. r. time (s) n. int. n. mot.

real 71% 112±41 4.3±1.6 3.0±0.9
sim 100% 50±52 2.0±1.6 1.0±0.2

CLOSE task s. r. time (s) n. int. n. mot.

real 72% 70±53 2.1±1.6 1.4±0.7
sim 93% 39±29 1.9±1.2 1.2±0.5

TABLE IV: Results from real-world and simulation testing for fully
opening and closing an oven. The average number of interaction
attempts (n. int.) shows how often the task scheduler triggers a
pose update and the number of motions (n. mot.) is the subset of
interactions that leads to an improvement of the articulation state.

to exploit the full robot model and low-level controller to

improve the quality of the inferred interaction priors. Our

pipeline also enables the agent to re-evaluate the pose model

and update the interaction pose at any time during task

execution. This allows the agent to split a task into two or

more non-continuous motions and recover from failure and

unexpected states. We find this to be crucial especially in

the real-world experiments, partially compensating for the

effects of the sim-to-real gap and allowing our pipeline to

perform long-horizon mobile manipulation tasks with high

success rates.

Limitations and future work: The sampling-based con-

troller used in our pipeline requires precise measurements

of the object joint state, currently provided by an external

sensor (IMU). While this is not an issue in simulation

and in controlled real-world environments, for general de-

ployment the object pose estimation should be performed

using onboard sensors, e.g. from RGB-D data [2], [35]–[38].

The controller also requires a precise object model, which

could be estimated from visual data and optionally refined

using interaction data [3], [39], [40]. Additionally, in future

work the pipeline could be extended to allow for grasping,

since not all tasks can be solved through non-prehensile

manipulation.
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APPENDIX

A. Controller

a) Sampling-based controller: In this section, we state

the equations of our sampling-based controller based on [10].

Let q ∈ R
nq and q̇ ∈ R

nq be the configuration of the agent

robot and its time derivative, where nq ∈ N>0 is the agent’s

degrees of freedom (DOF) — in our implementation nq =
10. Similarly, let o ∈ R

no and ȯ ∈ R
no be the configuration

of the object and its time derivative, where no ∈ N>0 is

the object’s DOF — in our implementation no = 1. The

controller state vector is defined as:

x = [qT , q̇T ,oT , ȯT ]T ∈ R
2(nq+no). (1)

The controller defines several stage cost function compo-

nents. The first component is an object cost, which encodes

the object manipulation objective:

co(o,o
∗;Wo) = ||o− o∗||2Wo

, (2)

where o∗ is the target object configuration and Wo ∈
R

no×no is a diagonal weight matrix. The second compo-

nent is the pose reach cost, which encodes the distance

of the end-effector to the reference interaction pose T∗ =
(position p∗, orientation R∗):

ct(q,T
∗;Wt) = || log(T(q)−T∗)||2Wt

, (3)

where the actual end-effector pose T(q) is computed via

forward kinematics from the joint configuration vector q

and Wt ∈ R
6×6 is a diagonal weight matrix.

A number of surrogate objectives are defined to encode

agent limits and constraints:

• Collision cost:

cc(o,q;wc) =

{

wc if agent-object collision

0 otherwise

where wc ∈ R.

• Joint limit cost

cj(q;wj ,Wj) =1[q > qupper](wj + ||q− qupper||
2
Wj

)+

1[q < qlower](wj + ||q− qlower||
2
Wj

)

where qupper and qlower are the upper and lower joint

limits, wj ∈ R and Wj ∈ R
nq×nq .

• Arm reach cost

ca(q;wa, was) = 1[r(q) > rmax](wa+was(r(q)−rmax))

where the current reach r is calculated from forward

kinematics from the joint state q and wa, was ∈ R are

weights.

The controller defines two modes of operation m ∈ {1, 2},

corresponding to two stages in object manipulation reaching

and interacting. In the first phase, the end-effector reaches

the target interaction pose while avoiding contact with the

object. This is achieved by setting the stage cost as:

l(xi,ui;m = 1) = cc + cj + ca + ct. (4)

In the second phase, the agent interacts with the object and

moves it towards the target state:

l(xi,ui;m = 2) = co + cj + ca + ct. (5)

b) Low-level controller: We use a dynamically com-

pensated low-level proportional-integral controller to convert

the velocity references u from the sampling-based controller

to joint torque commands τ . Let q∗ be the desired agent con-

figuration, calculated by integrating the velocity references

over the time interval dt:

q∗ = q+ udt.

Let M(q) ∈ R
nq×nq be the matrix of inertia of the agent.

The Coriolis and gravity terms of the system dynamics are

denoted as Co(q, q̇) and g(q), respectively. The joint torque

vector is calculated as:

τ = M(q)q̈∗ +Co(q, q̇)q̇∗ + g(q)−KD
˙̃q−KI

∫ t

0

˙̃qdτ,

(6)

with the auxiliary error variable q̃ = q − q∗ and KD and

KI being positive diagonal gain matrices.

c) Task scheduler: The task scheduler selects the ap-

propriate mode of the sampling-based controller, which can

either be reaching (m = 1) or interacting (m = 2). It also

regulates updates in the interaction pose T. Given the current

state observation x̂, the target object configuration o∗ and the

current pose reference T, the task scheduler implements the

following simple heuristic:

• At the beginning of the interaction, update the reference

pose and go into reaching mode (m = 1).
• During the interaction:

– If in reaching mode and the current reference pose

was reached by the end-effector, change into inter-

acting mode (m = 2).

– If in interacting mode and the object configuration

did not improve for a set number of seconds (5s in

simulation, 1s in real-life testing), lift the robot arm

to prevent camera occlusion while recording a new

point cloud, trigger an update of the reference pose

and return to reaching mode.

– If |o − o∗| ≤ 5◦, stop the interaction as the task is

fulfilled.

The task scheduling described above allows the agent to

change the interaction pose when the current one is not

advantageous anymore as well as to try again if the current

interaction pose failed to lead to any improvement in the ob-

ject configuration. As both the sampling-based controller and

the pose module are non-deterministic and the agent moves

in between the pose updates, the same initial conditions of

task and object might result in different behavior, i.e. success

where before the agent failed.

B. Affordance Definitions

This section gives an overview of the equations used

for the pose module. Let J(x0:N ,u0:N−1;o
∗) be a reward

function that, given the the target object configuration o∗,



maps a trajectory of system states {x0:N} and controller

inputs {u0:N−1} to a binary reward value:

J(x0:N ,u0:N−1;o
∗) =

{

1 if |o0 − o∗| − |oN − o∗| > θ

0 otherwise,

(7)

where θ ∈ R>0 is a success threshold (in our implementation

θ = 5◦).

Given an object, a target configuration o∗ and an initial

state x0, we define the affordance AJ of an interaction pose

(p,R) as the expected value of J over all the state-input

trajectories induced by the controller κ(x;o∗,p,R) on the

agent-object system from initial state x0. In our method, the

object and the initial state are implicitly represented by the

point cloud which is passed through the PointNet++ encoder

[31] to generate point-wise feature vectors fp(p,x0, object).
Therefore we use the following definition of affordance AJ :

AJ(p,R, fp,o
∗) := E

xi,κ(xi)
(J (x0:N , κ(x0:N−1);o

∗)) .

(8)

Following this affordance definition, the optimal interac-

tion pose (p∗,R∗) is given by maximizing the affordance

function AJ :

p∗,R∗ = argmax
p,R

AJ(p,R, fp,o
∗). (9)

Solving this equation for all possible interaction poses

is computationally intractable, therefore we define auxiliary

functions to optimize the position and orientation in a hi-

erarchical manner. The orientation proposal distribution QJ

generates orientation samples R ≈ R∗ that approximate the

optimum for a given interaction point p:

R ∼ QJ(p, fp,o
∗).

The actionability function αJ is defined as the point-wise

expected value of the affordance over interaction orientations

sampled from an orientation proposal distribution QJ :

αJ(p, fp,o
∗) = E

R∼Q
AJ(p,R, fp,o

∗). (10)

This allows us to first obtain the interaction point p̂ by

sampling the actionability:

p̂ = argmax
p

αJ(p, fp,o
∗). (11)

Next, a set of orientation proposals are sampled from

QJ . Finally the affordance function AJ is used to score the

orientation proposals and sample the highest-scoring one:

R̂ = arg max
R∼Q

AJ(p̂,R, fp̂,o
∗). (12)

This hierarchical procedure does not necessarily output

the globally optimal interaction pose. Instead, the quality

of the solution heavily depends on the orientation sampling

function QJ . If R ∼ Q only and always samples the optimal

interaction orientation, the procedure will yield the global

pose optimum.

C. Simulation Settings and Training

a) Simulation settings: Dynamics are simulated using

a physics simulation based on the commercial software

RAISIM. We set the simulation timestep to 0.0015 s. The

range of motion of the object articulation joint is set to 90◦.

To increase simulation speed, we do not check for collisions

between the two object links. We set a damping coefficient of

20 and friction of 40 at the object articulation joint. Between

surfaces of contact bodies, we set a low friction coefficient

(0.01).

b) Training data collection: Each object in the PartNet

Mobility dataset is scale-normalized within a unit sphere.

For each simulation instance, we sample an object from

the category oven or dishwasher and apply a scale factor ∈
[45%, 55%] of the normalized scale. This ensures a realistic

relative scale between our object and agent models, and

serves as augmentation. The position of the object, measured

from the world origin to the center of the object, is sampled

uniformly between the following bounds (x = 0 m, y ∈
[−0.3 m, 0.3 m], z ∈ [0.75 m, 0.95 m]). We initialize the

object articulation joint at rest 50% of the time (i.e. 0◦ for

the open task, 90◦ for the close task) and in an intermediate

state for the other 50% of initializations. We sample the

initial and target configuration within the articulation bounds

and according to the task, with a minimum task distance

∆o = |o∗ − o0| of 20◦.

The agent is initialized facing the world origin, with a

uniformly sampled distance ∈ [1.75 m, 3.0 m] and base rota-

tion angle arctan(y, x) ∈ [−20◦, 20◦]. During the simulated

interaction, the agent is given 30s to move to the pose

reference (i.e. mode m = 1 of the sampling-based controller)

and 5s to interact with the object (i.e. m = 2). A simulation is

considered successful if the object configuration was moved

by at least 5◦ towards the task. Figure 6 shows our simulation

environment, complete with axes for reference. We collect

12000 simulations for each task, which takes around 15 hours

per task on a commercial CPU (Intel Core i7-7700HQ quad-

core processor).

Fig. 6: Rendered simulation environment with world axes (x: red,
y: green, z: blue) for reference.

c) Network training: We use an Adam optimizer with

an initial learning rate of 1e−4 and batch size of 10. To



ensure convergence, we employ both learning rate scheduling

(patience of 5 epochs, discount factor 0.2, minimum im-

provement of 2%, minimum learning rate of 1e−6) and early

stopping (patience of 12 epochs, minimum improvement of

5%). Fully training a network usually requires between 30
and 50 epochs, and takes around 3 hours on a low-grade GPU

(NVIDIA GTX 1050 Ti, with 4 GB of dedicated RAM).

d) Evaluation setup: For evaluation, the simulation

is initialized in the same manner as during training data

collection. In the first experiment of the paper, the agent is

given 40s to move to the pose reference and 30s to interact

with the object. The sample success rate is evaluated, which

is the percentage of successful pose references and success

is defined as a movement of the object configuration o by at

least 5◦ towards the target o∗:

sample success rate =
n successful proposals

n proposals
. (13)

We also report the sample reach rate, which is the percentage

of pose references that are reachable by the agent if given

as a target pose to the sampling-based controller:

sample reach rate =
n reached proposals

n proposals
. (14)

In the second experiment, which evaluates the effect of

the closed-loop dynamic pose update, the agent is given 40s

to move to the pose reference and 300s to interact with

the object. We report the task success rate, where a task

is considered successful if the final object configuration o is

within 5◦ of the target o∗:

task success rate =
n successful tasks

n tasks
. (15)

In the third experiment, the pipeline is tested on objects

of the category safe, washing machine and table, applying a

scale factor of 50%, 50% and 100% respectively to ensure

a realistic proportion between agent and object. Following

VAT-Mart [8], we first uniformly sample an object category,

and then sample a shape from this category. We sample a

task ∆o = |o∗ − o0| in a range of [10◦, 70◦] for revolute

joints and [0.1, 0.7] for prismatic joints. The initial object

configuration o0 is randomly sampled such that it lies within

the articulation joint bounds given the task. We report the

task success rate, where we define a successful articulation

joint value equivalently to VAT-Mart within a tolerance of

15% of the task ∆o = |o∗ − o0|.

D. Network Sensitivity Study

We identify three sources of randomness in the results of

our interaction trials. Firstly, the random seed used for initial-

ization of the artificial neural networks causes variability in

the output of the network. Secondly, in our testing protocol

the initial state and target object configuration are sampled at

random. The third source of randomness lies in the stochastic

nature of the sampling-based controller. To analyse these

effects, we use the training data from the first experiment

to train multiple networks initialized with different random

seeds. The results are evaluated on 500 interaction trials for

each task and model (end-effector-aware and agent-aware).

Figure 7 reports the sample success rate of the two models

for the open task across 5 training runs and for the close

across 8 training runs. We observe that for the open task,

the performance of the networks is repeatable. In the close

task on the other hand, the end-effector-aware networks are

far more inconsistent. This could be caused by the fact that

behavior learned during training with a disembodied gripper

doesn’t transfer consistently to the testing task with the full

agent. Overall, this analysis shows that the performance of

the agent-aware pipeline is consistent over multiple training

runs, and that therefore the influence of the stochasticity in

controller and neural network is minimal.

Fig. 7: Sample success rate of the end-effector-aware and the agent-
aware networks for the open task across 5 training runs (left) and for
the close task (right) across 8 training runs with different random
seeds (indicated by the colors).

We analyzed the predictions of networks trained with

different random seeds and observed that while the test-

time performance is consistent across different networks, the

spread of the predicted actionabilities varies (c.f. Fig. 8).

This suggests that the networks converge to different local

minima, which could be caused by the fact that our training

data is relatively sparse and has a stochastic component due

to the controller. Additionally, it should be noted that at

test time only the points with the highest actionability are

sampled, therefore the distribution of the intermediate-level

actionability scores does not have a direct influence on the

executed interaction.

Fig. 8: The predicted actionability scores for networks trained with
different random seeds on (a) the open and (b) the close task.



E. Hardware experiments

The hardware experiments were conducted with an omni-

directional platform (Clearpath Ridgeback) with a 7 degree-

of-freedom robotic arm (Franka Emika Panda) mounted on

top. The selected target object is an oven which was placed

on a workbench, as seen in Fig. 9. As it is required by our

control pipeline, we build an articulation and collision model

of the oven from real-world measurements.

The sampling-based controller is run on an onboard

computer (Intel Core i7-8550U quad-core processor) at a

frequency of 66Hz, and a proportional-integral velocity

controller computes joint torque commands for the arm

at 1000Hz. The Ridgeback base is controlled directly in

velocity-space at a frequency of 50Hz. The task scheduler is

run at 30Hz. The pose module is only run when a pose update

is triggered, where each pose update requires roughly 1s of

computational time. The pose module and task scheduler are

run on a separate laptop (Intel Core i7-7700HQ quad-core

processor). The two devices communicate wirelessly over the

network using the ROS framework.

The sampling-based controller requires an accurate state

estimation. The pose of the Ridgeback mobile base is tracked

using an OptiTrack motion capture system, while for base

velocity we use odometry data. At startup, we calibrate

the oven position in the global reference frame. To obtain

the articulation joint angle, filtered linear acceleration and

angular velocity are continuously extracted from an inertial

measurement unit (IMU) mounted on the back of the oven

door. The joint velocity is estimated by projecting the angular

velocity measurements onto the articulation rotation axis,

while joint position is estimated by integrating velocity.

Point cloud data is collected by an Azure Kinect sensor

mounted on the robot base (Figure 9). While state-of-the-

art object segmentation, e.g. a neural network such as Mask

R-CNN [41], could be implemented for segmentation, we

used a simple heuristic which exploits the knowledge about

the position and size of the object. The segmentation of

the object from the scene is implemented using bounding

boxes. For part segmentation, the Iterative Closest Point

(ICP) algorithm is used to closely match the real-world

point cloud to an expected point cloud obtained from our

simulator/rendering setup [42]. Once the two point clouds

are matched, the simulated point cloud is converted to a

rough voxel map with a voxel size of 50mm and the real-

world point cloud is segmented by checking if its points

are contained in the voxel map. Example images from this

process can be found in Figure 10.

While the real-world experiment shows that our proposed

system performs well on the oven, we would also like

to showcase its generalization capabilities. Fig. 11 depicts

the point cloud of multiple articulated objects with the

corresponding affordance prediction. It shows that despite

the partial and noisy point cloud of unseen objects, the

affordance prediction module creates reasonable interaction

scores.



Fig. 9: Real-world setup showing the robotic platform and target object (left), the end-effector consisting of a single fixed finger (center)
and the placement of the RGB-D Camera (right).

Fig. 10: Segmentation process: scene point cloud (left), object point cloud (center) and part segmentation mask (right).

Fig. 11: Real-world point-clouds of unseen articulated objects (top row) and the respective predicted actionability scores (bottom row).
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