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Abstract— This paper presents OpTaS, a task specification
Python library for Trajectory Optimization (TO) and Model
Predictive Control (MPC) in robotics. Both TO and MPC
are increasingly receiving interest in optimal control and in
particular handling dynamic environments. While a flurry
of software libraries exists to handle such problems, they
either provide interfaces that are limited to a specific problem
formulation (e.g. TracIK, CHOMP), or are large and stati-
cally specify the problem in configuration files (e.g. EXOTica,
eTaSL). OpTaS, on the other hand, allows a user to specify
custom nonlinear constrained problem formulations in a single
Python script allowing the controller parameters to be modified
during execution. The library provides interface to several open
source and commercial solvers (e.g. IPOPT, SNOPT, KNITRO,
SciPy) to facilitate integration with established workflows in
robotics. Further benefits of OpTaS are highlighted through
a thorough comparison with common libraries. An additional
key advantage of OpTaS is the ability to define optimal control
tasks in the joint space, task space, or indeed simultaneously.
The code for OpTaS is easily installed via pip, and the source
code with examples can be found at github.com/cmower/optas.

I. INTRODUCTION

High-dimensional motion planners and controllers are

integrated in many of the approaches for solving complex

manipulation tasks. Consider, for example, a robot operating

in an unstructured and dynamic environment that, e.g. places

an object onto a shelf, or drilling during pedicle screw

fixation in surgery (see Fig. 1). In such cases, a planner

and controller must account for objectives/constraints like

bi-manual coordination, contact constraints between robot-

object and object-environment, and be robust to disturbances.

Efficient motion planning and fast controllers are an effective

way of enabling robots to perform these tasks subject to
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Fig. 1: Examples of contact-rich manipulation showing (a)

a robot placing an item on a shelf, (b) a human interacting

with a robot performing a drilling task during pedicle screw

fixation. Image credit: University Hospital Balgrist, Daniel

Hager Photography & Film GmbH.

motion constraints, system dynamics, and changing task

objectives.

Sampling-based planners [1] are effective, however, they

typically require considerable post-processing (e.g. trajectory

smoothing). Optimal planners (i.e. that are provably asymp-

totically optimal, e.g. RRT∗) are promising but inefficient (in

terms of computation duration) for solving high-dimensional

problems [2].

Gradient-based trajectory optimization (TO) is a key ap-

proach in optimal control, and has also been utilized for mo-

tion planning. This approach underpins many recent works

in robotics for planning and control, e.g. [3], [4], [5], [6],

[7], [8], [9], [10]. Given an initialization, optimization finds a

locally optimal trajectory, comprised of a stream of state and

control commands subject to motion constraints and system

dynamics (i.e. equations of motion).

Several reliable open-source and commercial optimization

solvers exist for solving TO problems, e.g. IPOPT [11], KNI-

TRO [12], and SNOPT [13]. However, despite the success

of the optimization approaches proposed in the literature

and motion planning frameworks such as MoveIt [14], there

is a lack of libraries enabling fast development/prototyping

of optimization-based approaches for multi-robot setups that

easily interfaces with these efficient solvers.

To fill this gap, this paper proposes OpTaS, a user-friendly

task-specification library for rapid development and deploy-

ment of nonlinear optimization-based planning and control

approaches such as Model Predictive Control (MPC). The

library leverages the symbolic framework of CasADi [15],

enabling function derivatives to arbitrary order via automatic

differentiation. This is important since some solvers (e.g.

SNOPT) utilize the Jacobian and Hessian.
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Fig. 2: System overview for the proposed OpTaS library. Red highlights the main features of the proposed library. Green

shows configuration parameter input. Grey shows third-party frameworks/libraries. Finally, the image in the top-right corner

shows integration with the ROS-PyBullet Interface [16].

A. Related work

In this section, we review popular optimization solvers

and their interfaces. Next, we describe works similar (in

formulation) to our proposed library. Finally, we summarize

the key differences and highlight our contributions. Table I

summarizes alternatives and how they compare to OpTaS.

There are several capable open-source and commercial

optimization solvers. First considering quadratic program-

ming, the OSQP method provides a general purpose solver

based on the alternating direction method of multipliers [17].

Alternatively, CVXOPT implements a custom interior-point

solver [18]. IPOPT implements an interior-point solver for

constrained nonlinear optimization. SNOPT provides an in-

terface to an SQP algorithm [13]. KNITRO also solves gen-

eral mixed-integer programs [12]. Please note that SNOPT

and KNITRO are proprietary.

These solvers are often implemented in low-level program-

ming languages such as C, C++, or FORTRAN. However,

there are also many interfaces to these methods via higher

level languages, such as Python, to make implementation and

adoption easier. The SciPy library contains the optimize

module [19] to interface with low-level routines, e.g. conju-

gate gradient and BFGS algorithm [20], the Simplex method

[21], COBYLA [22], and SLSQP [23]. A requirement when

using optimization-based methods is the need for function

gradients. Several popular software packages implement

automatic differentiation [24], [15], [25]. We leverage the

CasADi framework [15] for deriving gradients. Our choice

for CasADI is based on the fact that it comes readily

integrated with common solvers for optimal control. To the

best of our knowledge, JAX and PyTorch are not currently

integrated with constrained nonlinear optimization solvers.

Similar to our proposed library are the following pack-

ages. The MoveIt package provides the user with specific

TABLE I: Comparison between OpTaS and common alter-

natives in literature.

Languages End-pose Traj. MPC Solver AutoDiff ROS Re-form

OpTaS Python 3 3 3 QP/NLP 3 3 3

EXOTica Python/C++ 3 3 7 QP/NLP 7 3 3

MoveIt Python/C++ 3 3 7 QP 7 3 7

TracIK Python/C++ 3 7 7 QP 7 3 7

RBDL Python/C++ 3 7 7 QP 7 7 7

eTaSL C++ 3 7 7 QP 3 7
1

3

OpenRAVE Python 7 3 7 QP 7 3 7

IK/planning formulations and provides interfaces to solvers

for the particular problem [14]. The eTaSL library [26]

allows the user to specify custom tasks specifications, but

only supports problems formulated as quadratic programs.

The CASCLIK library uses CasADi and provides support

for constraint-based inverse kinematic controllers [27], to the

best of our knowledge they allow optimization in the joint

space. We provide joint space, task space optimization and

also the ability to simultaneously optimize in the joint/task

space. Furthermore, our framework supports optimization of

several robots in a single formulation. The EXOTica library

allows the user to specify a problem formulation from an

XML file [28]. The package, however, requires the user to

supply analytic gradients for additional sub-task models.

B. Contributions

This paper makes the following contributions:

• A task-specification library, in Python, for rapid devel-

opment/deployment of TO approaches for multi-robot

setups.

• Modeling of the robot kinematics (forward kinematics,

geometric Jacobian, etc.), to arbitrary derivative order,

given a URDF specification.

1Enabled with external pluggins.



• An interface that allows a user to easily reformulate

an optimal control problem, and define parameterized

constraints for online modification of the optimization

problem.

• Analysis comparing the performance of the library (i.e.

solver convergence, solution quality) versus existing

software packages. Further demonstrations highlight the

ease in which nonlinear constrained optimization prob-

lems can be set up and deployed in realistic settings.

II. PROBLEM FORMULATION

We can write an optimal control formulation of a TO or

planning problems as

min
x,u

cost(x, u;T ) subject to











ẋ = f(x, u)

x ∈ X

u ∈ U

(1)

where t denotes time, and x = x(t) ∈ R
nx and u =

u(t) ∈ R
nu denote the states and controls, with T being the

time-horizon for the planned trajectory. The scalar function

cost : Rnx ×R
nu → R represents the cost function (typically

a weighted sum of terms each modeling a certain sub-task),

the dot notation denotes a derivative with respect to time

(i.e. ẋ ≡ dx
dt

), f represents the system dynamics (equations

of motion), and X ⊆ R
nx and U ⊆ R

nu are feasible

regions for the states and controls respectively (modeled by

a set of equality and inequality constraints). Direct optimal

control, optimizes for the controls u for a discrete set of time

instances, using numerical methods (e.g. Euler or Runge-

Kutta), to integrate the system dynamics over the time

horizon T [29]. Given an initialization xinit, uinit, a locally

optimal trajectory x∗, u∗ is found by solving (1).

As discussed in Sec. I, many works propose optimization-

based approaches for planning and control. These can all be

formulated under the same framework, i.e. a TO problem as

in (1). The goal of our work is to deliver a library that allows

a user to quickly develop and prototype constrained nonlinear

TO for multi-robot problems, and deploy them for motion

generation. The library includes two types of problems, IK

and task-sace TO, and indeed both simultaneously. Common

steps, such as transcription that transforms the problem’s

task-level description into a form accepted by numerical

optimization solver routines, should be automated and thus

not burden the user. Furthermore, many works in practice

require the ability to adapt constraints dynamically to handle

changes in the environment (e.g. MPC). This motivates a

constraint parameterization feature.

III. PROPOSED FRAMEWORK

In this section, we describe the main features of the

proposed library shown in Fig. 2. The library is completely

implemented in the Python programming language. We chose

Python because it is simple for beginners but also versatile

with many well-developed libraries, and it easily facilitates

fast prototyping.

A. Robot model

The robot model (RobotModel) provides the kinematic

modeling and specifies the time derivative orders required for

the optimization problem. The only requirement is a URDF

to instantiate the object2. A key feature is that we can include

several robots in the TO, which is useful for dual arm and

whole-body optimization. Additional base frames and end-

effector links can be added programatically (for example,

when several robots are included the optimization their

base frames should be registered within a global coordinate

frame).

The RobotModel class allows access to data such as:

the number of degrees of freedom, the names of the actuated

joints, the upper and lower actuated joint limits, and the kine-

matics model. Furthermore, we provide methods to compute

the forward kinematics and geometric Jacobian in any given

reference frame. Several methods modeling the kinematics

are supplied, given a specification from the user for the base

frame and end-effector frame. These methods include: the 4×
4 homogeneous transformation matrix, translation position,

rotational representations (e.g. Euler angles, quaternions),

the geometric and analytical Jacobian. Each of the methods

above depend on a joint state (supplied as either a Python

list, NumPy array, or CasADi symbolic array).

B. Task model

Several works optimize robot motion in the task space

and then compute the IK as a secondary step, e.g. [8], [9].

The task model (TaskModel) provides a representation for

any arbitrary trajectory. For example, the three dimensional

position trajectory of an end-effector. In the same way as

the robot model, the time derivatives can be specified in the

interface an arbitrary order.

C. Optimization builder

This section introduces and describes the optimization

builder class (OptimizationBuilder). The purpose of

this class is to aid the user to easily setup a TO problem,

and then automatically build an optimization problem model

(Sec. III-D) that interfaces with a solver interface (Sec.

III-E). The development cycle consists in specifying the

task (i.e. decision variables, parameters, cost function, and

constraints) using intuitive syntax and symbolic variables.

Then, the builder creates an optimization problem class,

which interfaces with several solvers.

D. Optimization problem model

The standard TO is stated in (1). This task/problem is

specified by the optimization builder class in intuitive syntax

for the user. Transcribing the problem to a form that can be

solved by off-the-shelf solvers is non-trivial. The output of

the optimization builder method build is an optimization

problem model that allows us to interface with several

solvers.

2http://wiki.ros.org/urdf

http://wiki.ros.org/urdf


The most general optimization problem that is modeled

by OpTaS is given by

X∗ = argmin
X

f(X;P ) (2a)

subject to

k(X;P ) =M(P )X + c(P ) ≥ 0 (2b)

a(X;P ) = A(P )X + b(P ) = 0 (2c)

g(X;P ) ≥ 0 (2d)

h(X;P ) = 0 (2e)

where X = [vec(x)T , vec(u)T ]T ∈ R
nX is the decision

variable array such that x, u are as defined in (1) and vec(·)
is a function that returns its input as a 1-dimensional vector,

P ∈ R
nP is the vectorized parameters, f : R

nX → R

denotes the objective function, k : R
nX → R

nk denotes

the linear inequality constraints, a : RnX → R
na denotes

the linear equality constraints, g : R
nX → R

ng denotes

the nonlinear inequality constraints, and h : RnX → R
nh

denotes the nonlinear equality constraints. The decision vari-

ables X are all the joint states and other variables specified

by the user stacked into a single vector. Similarly for the

parameters, cost terms, and constraints. Vectorization is made

possible by the SXContainer data structure implemented

in the sx container module. This data structure enables

automatic transcription of the TO problem specified in (1)

into the form (2).

Of course, not all task specifications will require defini-

tions for each of the functions in (2). Depending on the struc-

ture of the objective function and constraints, the required

time budget, and accuracy, some solvers will be more appro-

priate for solving (2). For example, a quadratic programming

solver that only handles linear constraints (e.g. OSQP [17])

is unsuitable for solving a problem with nonlinear objective

function and nonlinear constraints. The build process auto-

matically identifies the optimization problem type, exposing

only the relevant solvers. Several problem types are available

to the user: unconstrained quadratic cost, linearly constrained

with quadratic cost, nonlinear constrained with quadratic

cost, unconstrained with nonlinear cost, linearly constrained

with nonlinear cost, nonlinear cost and constraints.

1) Initialization: Upon initialization of the optimization

builder class we can specify (i) the number of time steps

in the trajectory, (ii) several robot and task models (given a

unique name for each), (iii) the joint states (positions and

required time-derivatives) that integrate the decision variable

array, (iv) task space labels, dimensions, and derivatives

to also integrate the decision variable array, (v) a Boolean

describing the alignment of the derivatives (Fig. 3), and (vi)

a Boolean indicating whether to optimize time steps.

The alignment of time-derivatives can be specified in

two ways. Each derivative is aligned with its corresponding

state (alignement), or otherwise. This is specified by the

derivs align flag in the optimization builder interface

and shown diagramatically in Fig. 3.

In addition, the user can also optimize the time-steps

between each state. The time derivatives can be integrated

Fig. 3: Joint state alignment with time. User supplies

derivs align that specifies how joint state time deriva-

tives should be aligned.

over time, e.g. qt+1 = qt + δτtq̇t, where δτt is an increment

in time. When optimize time=True, then each δτt is

included as decision variables in the optimal control problem.

2) Decision variables and parameters: Decision variables

are specified in the optimization builder class interface for

the joint space, task space, and time steps. Each group

of variables is given a unique label and can be retrieved

using the get model state method. States are retrieved

by specifying a robot name or task name, the required time

index, and the time derivative order required. Additional

decision variables can be included in the problem by using

the add decision variables method given a unique

name and dimension.

Parameters for the problem (e.g. safe distances) can be

specified using the add parameter method. To specify a

new parameter, a unique name and dimension is required.

3) Cost and constraint functions: The cost function in (1)

is assumed to be made up of several cost terms, i.e.

cost(x, u;T ) =
∑

i

ci(x, u;T ) (3)

where ci : R
nx × R

nu → R is an individual cost term

modeling a specific sub-task. For example, let us define the

cost terms c0 = ‖ψ(xT ) − ψ∗‖2 and c1 = λ
∫ T

0
‖u‖2 dt

(note, discretization is implicit in this formulation) where

ψ : R
nx → R

3 is a function for the forward kinematics

position (note, this can be provided by the robot model

class as described in Sec. III-A), ψ∗ ∈ R
3 is a goal task

space position, and 0 < λ ∈ R is a scaling term used

to weight the relative importance of one constraint against

the other. Thus, c0 describes an ideal state for the final

state, and c1 encourages trajectories with minimal control

signals (e.g. minimize joint velocities). Each cost term is

added to the problem using the add cost term method;

the build sequence ensures each term is added to the

objective function.

Several constraints can be added to the optimization

problem by using the add equality constraint and

add leq inequality constraint methods that add

equality and inequality constraints respectively. When the

constraints are added to the problem, they are first checked to

see if they are linear constraints with respect to the decision

variables. This functionality allows the library to differentiate

between linear and nonlinear constraints.

Additionally, OpTaS offers several methods that provide

an implementation for common constraints, as, for example,



joint position/velocity limits and time-integration for the

system dynamics f (e.g joint velocities can be integrated

to positions).

E. Solver interface

OpTaS provides interfaces to solvers (open-source and

commercial) that interface with CasADi [15] (such as

IPOPT [11]), SNOPT [13], KNITRO [12], and Gurobi [30]),

the Scipy minimize method [19], OSQP [17], and CVX-

OPT [18].
1) Initialization of solver: When the solver is initialized,

several variables are setup and the optimization problem

object is set as a class attribute. The user must then call

the setup method - that itself is an interface to the solver

initialization that the user has chosen. The requirement of

this method is to setup the interface for the specific solver;

relevant solver parameters are passed to the interface at this

stage.
2) Resetting the interface: When using the solver as a

controller, it is expected that the solver should be called more

than once. In the case for feedback controllers or controllers

with parameterized constraints (e.g. obstacles), this requires

a way to reset the problem parameters. Furthermore, the

initial seed for the optimizer is often required to be reset

at each control loop cycle. To reset the initial seed and

problem parameters the user calls reset initial seed,

and reset parameters, respectively. Both the initial

seed and parameters are initialized by giving the name of the

variables. The required vectorization is internally performed

by the solver utilizing features of the SXContainer data

structure. Note, if any decision variables or parameters are

not specified in the reset methods then they automatically

default to zero. This enables warm-starting the optimization

routine, e.g. with the solution of the previous time-step

problem.
3) Solving an optimization problem: The optimization

problem is solved by calling the solve method. This

method passes the optimization problem to the desired

solver. The resulting data from the solver is collected and

transformed back into the state trajectory for each robot. A

method is provided, named interpolate, is used to in-

terpolate the computed trajectories across time. Additionally,

the method stats retrieves available optimization statistics

(e.g. number of iterations).
4) Extensible solver interface: The solver interface has

been implemented to allow for extensibility, i.e. additional

optimization solvers can be easily integrated into the frame-

work. When a user would like to include a new solver

interface, they must create a new class that inherits from

the Solver class. In their sub-class definition they must

implement three methods: (i) setup which (as described

above) initializes the solver interface, (ii) solve that calls

the solver and returns the optimized variable X∗, and (iii)

stats that returns any statistics from the solver.

F. Additional features

Support for integration with ROS [31] is provided out-

of-the-box. The ROS node provided is integrated with the

import optas

# Setup robot and optimization builder

T = 100 # number of time steps in trajectory

urdf = ’/path/to/robot.urdf’

r = optas.RobotModel(urdf, time_deriv=[0, 1])

n = r.get_name()

b = optas.OptimizationBuilder(T=T, robots=[r])

# Retrieve variables and setup parameters

q0 = b.get_model_state(n, t=0)

qT = b.get_model_state(n, t=-1) # final state

pg = b.add_parameter(’pg’, 3) # goal pos.

qc = b.add_parameter(’qc’, r.ndof) # init q

o = b.add_parameter(’o’, 3) # obstacle pos.

r = b.add_parameter(’r’) # obstacle radius

dt = b.add_parameter(’dt’) # time step

# Forward kinematics

p = r.get_global_link_position(tip, qT)

# Cost and constraints

b.add_cost_term(’c’, optas.sumsqr(p - pg))

b.integrate_model_states(

n, time_deriv=1, dt=dt)

b.add_equality_constraint(’init’, q0, qc)

for t in range(T):

b.add_leq_inequality_constraint(

optas.sumsqr(p - o), r**2)

# Build optimization problem and setup solver

solver = optas.CasADiSolver(

b.build()).setup(’ipopt’)

Fig. 4: Example code for TO described in Section IV.

ROS-PyBullet Interface [16] so the publishers/subscribers

can connect a robot in the optimization problem with a robot

simulated in PyBullet.

In addition, we provide a port of the spatialmath

library by Corke [32] that supports CasADi variables. This

library defines methods for manipulating homogeneous trans-

formation matrices, quaternions, Euler angles, etc. using

CasADi symbolic variables.

IV. CODE EXAMPLE

In this section, we describe a common TO problem and

give the code that models the problem. We aim to highlight

how straightforward it is to setup a problem.

Consider a serial link manipulator, and goal to find a

collision-free plan over time horizon T to a goal end-

effector position pg given a starting configuration qc. A single

spherical collision is represented by a position o and radius r.

The robot configuration qt represent states, and the velocities

q̇t are controls.

The cost function is given by ‖p(qT ) − pg‖
2 where p

is the position of the end-effector given by the forward

kinematics. We solve the problem by minimizing the cost

function subject to the constraints: (i) initial configuration,

q0 = qc, (ii) joint limits q− ≤ qt ≤ q+, and (iii) obstacle

avoidance, ‖p(qt) − o‖2 ≥ r2. The system dynamics is

represented by several equality constraints qt+1 = qt + δtq̇t
that can be specified by methods already in-built into OpTaS.

The code for the TO problem above, is shown in Fig. 4.



(a)

(b)

Fig. 5: Comparison of end-effector task space trajectories

computed using two different formulations. (a) Shows the

start (left), and final configurations (right) for the robot under

each approach. (b) Plots the end-effector position trajectory

two dimensions.

V. EXPERIMENTS

A. Optimization along custom dimensions

Popular solvers, such as TracIK [33], require the user to

provide a 6D pose as the task space goal. Whilst this is ap-

plicable to several robotics problems (e.g. pick-and-place) it

may not be necessary to optimize each task space dimension

(e.g. spraying applications does not require optimization in

the roll angular direction). Furthermore, optimizing in more

dimensions than necessary may be disadvantageous.

OpTaS can optimize or neglect any desired task space

dimension. This can have certain advantages, for example

increasing the robot workspace. Consider a non-prehensile

pushing task along the plane, optimizing the full 6D pose

may not be ideal since the task is two dimensional. By

optimizing in the two dimensional plane and specifying

boundary constraints on the third linear spatial dimension,

increases the robots workspace.

We setup a tracking experiment in OpTaS using a sim-

ulated Kuka LWR robot arm to compare the two cases:

(i) optimize the full 6D pose, and (ii) optimize 2D linear

position. The robot is given an initial configuration (Fig. 5a

left) and the task is to move the end-effector with velocity of

constant magnitude and direction in the 2D plane. The end

configuration for each approach is shown in Fig. 5a right and

the end-effector trajectories are shown in Fig. 5b. We see

that the 2D optimization problem is able to reach a greater

distance, highlighting that the robot workspace is increased.

B. Performance comparison

In this section, we demonstrate that OpTaS can formulate

similar problems and compare its performance to alterna-

tives. First, we model, with OpTaS, the same problem as

used in TracIK [33] and in addition we also model the

problem using EXOTica [28]. The Scipy SLSQP solver [23]

was used for OpTaS and EXOTica. With same Kuka LWR

Fig. 6: Figure-of-eight trajectory tracked by the Kuka LWR.

(a) (b)

Fig. 7: Solver duration comparisons for figure of eight

motion. (a) Compares an IK tracking approach described

in Section V, (b) is a similar comparison that includes a

maximization term for manipulability. Green is OpTaS, red

is TracIK, and blue is EXOTica.

robot arm in the previous experiment, we setup a task where

the robot must track a figure-of-eight motion in task space

(Fig. 6) and record the CPU time for the solver duration at

each control loop cycle. The results are shown in Fig. 7a.

TracIK is the fastest (0.049 ± 0.035ms), which is expected

since it is optimized for a specific problem formulation. We

see that OpTaS (2.608 ± 0.239ms) is faster than EXOTica

(3.694± 0.300ms)

A second experiment, using the same setup as be-

fore, was performed comparing the performance of OpTaS

against EXOTica with an additional cost term to maxi-

mize manipulability [34]. The results are shown in Fig.

7b. Despite using the same formulation and solver, OpTaS

(2.650± 0.270ms) achieved better performance than EXOT-

ica (7.640±1.404ms). Without extensive profiling it is diffi-

cult to precisely explain this difference. However, EXOTica

requires the user to supply analytical gradients for sub-tasks

(called task maps in the EXOTica documentation). EXOTica

does not provide the gradients for the manipulability task,

and thus falls-back to using the finite difference method to

estimate the gradient - this can can be slow to compute.

VI. CONCLUSIONS

In this paper, we have proposed OpTaS: an optimization-

based task tpecification Python library for TO and MPC.

OpTaS allows a user to setup a constrained nonlinear pro-

grams for custom problem formulations and has been shown

to perform well against alternatives. Parameterization enables

programs to act as feedback controllers, motion planners, and

benchmark problem formulations and solvers.

We hope OpTaS will be used by researchers, students, and

industry to facilitate the development of control and motion

planning algorithms. The code base is easily installed via

pip and has been made open-source under the Apache 2

license: https://github.com/cmower/optas.

https://github.com/cmower/optas
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