
Visual control through narrow passages

for an omnidirectional wheeled robot

Damiano Morra1, Enric Cervera2, Luca Rosario Buonocore3, Jonathan Cacace1,

Fabio Ruggiero1, Vincenzo Lippiello1, and Mario Di Castro3

Abstract— Robotic systems are gradually replacing human
intervention in dangerous facilities to improve human safety
and prevent risky situations. In this domain, our work addresses
the problem of autonomous crossing narrow passages in a semi-
structured (i.e., partially-known) environment. In particular,
we focus on the CERN’s Super Proton Synchrotron particle
accelerator, where a mobile robot platform is equipped with
a lightweight arm to perform measurements, inspection, and
maintenance operations. The proposed approach leverages an
image-based visual servoing strategy that exploits computer
vision to detect and track known geometries defining narrow
passage gates. The effectiveness of the proposed approach has
been demonstrated in a realistic mock-up.

I. INTRODUCTION

Nowadays, mobile robots are extensively used to assist

human workers operating in hazardous environments [1]–

[3]. For example, mobile robots have been used for rescue

missions in coal mines [4], whose locations are hazardous

for humans because non-breathable air and the risk of

flooding. Domains in which robots can play a crucial role

include explosive devices disposal [5], decontamination of

nuclear sites, and handling contaminated waste [6]. At the

European Organization for Nuclear Research (CERN), within

the world’s largest particle accelerator plant, CERNbots [7]

are used for various tasks, such as screwing, welding, and

inspecting in areas where radiations, oxygen deficiency, and

electrical hazards can be a threat [8]. During such operations,

robots have to cross small-sized security doors.

In unstructured (i.e., completely unknown) or semi-

structured (i.e., partially known) scenarios like those men-

tioned above, narrow passages (e.g., doors, tunnels, aisles,

etc.) represent a big challenge. The narrow passages are

identified in [9] using a laser scanner sensor considering

neighbor line segments. Other techniques consider that the

robot has already detected the gate. In [10], a low-cost

method based on infrared and sonar sensors used to detect the
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Fig. 1. The MIRA SPS Robot during inspection (left) and the MIRA Robot
crossing one of the sector doors (right).

angle to which the robot is facing the passage is presented.

The robot is correctly oriented using a fuzzy logic controller.

A similar approach focused on narrow aisles is presented

in [11]. In the solutions mentioned so far, expensive and

bulky sensors are often mandatory. A solution based on

an RGB-D camera is instead presented in [12]. The depth

channel is used as a laser scan, and passages are searched

as distance discontinuities of surroundings.

In setups where only monocular camera sensors are avail-

able, visual servoing solutions are often adopted. Many

solutions rely on the use of artificial landmarks. These are

not suitable in unstructured or semi-structured environments

where it is mandatory to explore computer vision-like solu-

tions. For instance, computer vision is used in [13] to find

rectangular shapes of standard house doors. Other works use

optical flow to discern obstacles from the ground plane [14].

For instance, this information is used in [15] to control the

robot via a potential field technique, eventually achieving the

traversal of a corridor. Optical flow is also exploited in [16] to

avoid additional obstacles in the pathway. Lastly, given that

a proper data-set of the path is available, machine learning

has been employed for semi-structured environments [17].

At the Super Proton Synchrotron (SPS) particle acceler-

ator, inspection and maintenance tasks are carried out by

the MIRA SPS Robot, an omnidirectional mobile manip-

ulator [18]. When the particle beam is on, each tunnel

sector is kept isolated for security reasons. The robot can

move through different sectors thanks to small-sized passages

placed at the bottom of the doors (see Fig. 1). The accelera-

tor, whose circumference is 6.9 km, is divided into 19 sectors

by the same number of doors. Teleoperation requires, for

a skilled operator, an average time of 2 minutes per gate.

This means that, for a complete tour of the accelerator, 30
to 60 minutes are used for crossing sector doors. Besides

time consumption, this task impacts battery duration and



Fig. 2. MIRA SPS robot and employed frames.

can stress the operator. The MIRA SPS Robot was designed

based on the gate’s size so that there are just 2 cm per side of

free space left while crossing. Due to its compact dimensions,

it is equipped with monocular RGB cameras only.

The above-described scenario at CERN fits this paper’s

aim, proposing a visual servoing solution for the autonomous

crossing of narrow doors for an omnidirectional platform, set

in a semi-structured environment in which site alterations are

strictly prohibited. A-priori geometry information about the

doors is known and exploited to identify the corners with

a computer vision algorithm. Features are tracked to reduce

errors and improve robustness. Subsequently, the robot is

aligned to the door using an image-based visual servoing

(IBVS) approach [19], [20], and it is driven through the other

side of the gate via feed-forward control.

II. IMAGE BASED VISUAL SERVOING

A. Background

With reference to Fig. 2, let P : OP − (xP , yP , zP) be

the platform frame attached to the base centre. Let W be the

reference fixed world frame, E be the frame attached to the

arm’s end-effector, and C be the camera frame.

Let v̄P =
[

vTP ωT
P

]T
∈ R

6 be the twist of P with respect

to W , expressed in P,with vP ∈ R
3 the instantaneous linear

velocity and ωP ∈ R
3 the instantaneous angular velocity.

Similarly, let v̄C =
[

vTC ωT
C

]T
∈ R

6 be the twist of C
with respect to W , expressed in P , with vC ∈ R

3 the

instantaneous linear velocity and ωC ∈ R
3 the instantaneous

angular velocity.

The considered robot is equipped with nj = 4 Mecanum

wheels mounted in cross-shape configuration [21] so that

movement is omnidirectional. Let ωj ∈ R be the angular

speed of the j-th wheel, with j = 1, . . . , nj . Let Rx,j > 0
and Ry,j > 0 be the distances between the robot center

and the center of the j-th wheel along the xP and yP axes,

respectively, and RM > 0 be the wheel’s radius (see Fig. 3).

The differential map between v̄P and the wheels angular

velocities vector, ω =
[

ω1 · · · ωnj

]T
∈ R

nj , is expressed

by v̄P = Jω, where J ∈ R
6×nj act as a constant mapping

Fig. 3. Top view of the MIRA SPS robot’s mobile base.

Fig. 4. Schematic of the proposed two-step solution from the top view.

matrix, and it is defined as

J =
RM
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with a = Rx,j and b = Ry,j , ∀j ∈ {1, . . . , nj} [22].

B. Task definition

With reference to Fig. 4, let A be the current point of our

mobile base, B be the point in which the robot is perfectly

aligned to the narrow passage, and C be the point after the

door is crossed. For simplicity, the task has been divided into

two sub-steps: the first is the closed-loop alignment to the

door (movement from A to B), while the latter is an open-

loop forward movement starting from B and leading to C,

that has to be performed with the arm lowered as shown in

Fig. 1.

The alignment uses only visual information provided by

the camera and ensures high accuracy. In this way, there



Fig. 5. Schematic of the narrow passage, with the considered corners and
the related gate frames.

is no collision with the gate during the open-loop forward

movement. The aligned pose B has to be chosen close to

the gate so that the path length towards C is shortened and,

thus, collision risk is reduced. However, it is essential to find

a good trade-off between the closeness of the aligned pose

and the barrel distortion affecting the algorithm.

C. IBVS

With reference to Fig. 5, let G be the gate frame placed at

the center of the narrow passage, without loss of generality.

Besides, let Fi, with i = 1, . . . , n, be the frames placed

at each feature on the gate. In this case study, the chosen

features are the n = 4 gate corners (see Fig. 5).

It is worth remarking that the presence of a robotic arm is

not mandatory for the devised solution. Nonetheless, using

a hand camera helps obtain a better field of view.

The IBVS algorithm controls the robot motion to minimize

the difference between the n normalized features detected

at the desired configuration sd ∈ R
n and at the current one

s ∈ R
n (in pixel), directly on the image plane. This technique

has the great advantage of not requiring the online robot-gate

relative pose computation, except for the camera-feature dis-

tance vector measured along the z−axis of C. Such distances

are stacked in the vector ζCC,F =
[

zCC,F1
· · · zCC,Fn

]T
∈

R
n, with zCC,Fi

> 0, where i = 1, . . . , n. The IBVS

is also less sensitive to the intrinsic and extrinsic camera

calibrations, and the gate is kept inside the field of view

along the entire task. Notice that occlusions cannot happen

in the addressed scenario. Since the gate is a fixed element

of the environment, the time derivative of the desired feature

vector, ṡd ∈ R
n, is null. For the same reason, it is possible

to use the differential equation

ṡ = Ls(s, ζ
C
C,F )v̄C (2)

to map image-space variables to the operational-space vari-

ables. In detail, v̄C is transformed into the movement of

the features, ṡ, through the (2n × 6) interaction matrix

Ls(s, ζ
C
C,F ) =





Ls1(s1, z
C
C,F1

)

· · ·
Lsn(sn, z

C
C,Fn

)



 , whose elements are de-

Fig. 6. IBVS control scheme
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with Xi, Yi ∈ R the normalized coordinate of the detected

feature in the image plane.

By solving a Perspective-n-Point problem [23], the oper-

ational space pose of the gate with respect to the camera

is obtained, expressed by the transformation matrix T C
G ∈

SE(3). Then, since the geometry of the gate is known (i.e.,

the pose of G with respect to the feature frames, TG
Fi

∈
SE(3), is known), each zCC,Fi

can be extracted from the last

column of T C
Fi

= T C
G T

G
Fi

, with i = 1, ..., n and T C
Fi

∈ SE(3)
the pose of the feature frame Fi in C.

During the task, the arm is still, so that the hand camera is

fixed with respect to the platform. This means that v̄PC ≡ v̄P ,

with v̄PC the twist of C with respect to W , expressed in P . The

IBVS control law can be designed by pseudo-inverting (2),

leading to v̄C = L†
s(s, ζ

C
C,F )Ks(sd − s), with Ks ∈ R

n×n a

positive definite matrix and † the pseudo-inversion operator.

Then, to obtain the required velocities for each wheel, the

mapping relationship ω = J†v̄P must be applied, with v̄P ≡

v̄PC =

[

RP
C O3×3

O3×3 RP
C

]

v̄C , where O× is the zero matrix of

proper dimensions and RΣ2

Σ1
∈ SO(3) is the rotational matrix

from a generic frame Σ1 to Σ2. As long as the gain matrix

Ks ∈ R
n×n is positive definite, the evolution of the error

es = sd−s is stable, i.e., ės+Kses = 0. Asymptotic stability

is not achievable due to mapping matrix J introduced in (1)

not being full rank [20].

An overview of the algorithm is shown in Fig. 6. The

wheels’ speed is increases when the robot is very distant from

the aligned pose. It is then essential to consider the motor



Fig. 7. Example of contour template for the metallic door.

nominal speed: if one or more motors saturate, the resulting

platform movement is unpredictable. Moreover, high-speed

velocities cause a slippage effect. On the other hand, when

the error es has a low value, the alignment gets slower.

This means that the algorithm slows down once the robot is

close to the goal pose. Therefore, a scaling solution has been

adopted: ω is halved whenever ωj > ωlim, with j = 1, ..., nj

and ωlim > 0. Therefore, Ks speeds up the algorithm when

the robot is close to the door, and ωlim prevents critical high

speed whenever the robot is far from it.

Significant factors impacting precision are poor camera

calibration, frames misalignment, and slippage. The operator

supervising the task can switch back to manual control in

faulty situations.

III. COMPUTER VISION

Our visual processing aims to detect and track the doors

in the tunnel and use them for manoeuvring the robot. In

the facility, constant illumination is provided by spotlights.

The vision system should be robust with respect to changes

in lighting conditions given by the movement of the on-

robot camera. We present a novel combination of color

object detection and edge tracker that robustly extracts visual

features for controlling the robot platform.

The characteristics of the doors determine the visual

processing algorithm. Doors are metallic, possibly reflective,

texture-less, and solid-colored. Poly-lines can approximate

their contour. A contour template is defined by a set of

relative angles between consecutive contour segments, whose

dimension is neglected. Thus, the template is invariant to

the door scale. The angles between segments are relative:

the proposed approach is invariant to the rotation around

the camera axis. An example is shown in Fig. 7. The list

of angles for the template of the yellow metallic door is

(90◦,−90◦,−90◦, 90◦).
The vision processing consists of color thresholding, re-

moving noise with morphological operations (opening and

closing), and contour detection. The best match between the

contour template and each subset of the most significant

detected contour is returned. The contours detection is noisy

due to the cluttered background and lighting conditions. Nev-

ertheless, the detected points are helpful for the initialization

of a line tracker. We chose a moving edge tracker [24] that

Fig. 8. Original input image (top-left) and monochrome channels for
tracking: top-right, intensity (value) channel; bottom-left, saturation channel;
bottom-right, proposed color distance channel.

Fig. 9. Contour points (left image) used for the initialization of the segment
tracker (right image).

can track line segments in monochrome images. Thus, it

is commonly used with the image intensity channel. Since

we are tracking highly saturated color objects, the edges in

the monochrome images of the saturation channel are more

distinctive to the grey floor and walls.

Figure 8 depicts a sample frame of the yellow door: in the

monochrome intensity (value) image, the door’s brightness

and the floor are very similar; thus, the edges are difficult

to track. However, the saturation channel produces evident

edges since the floor and walls appear nearly black. The

saturation channel’s drawback is that its computation is based

on the value channel, which can be computed in several ways

and produce different results to the perceived colors.

We have introduced a new color distance measurement

that improves the image to be tracked. This color distance

is computed as the norm of the vector product of the RGB

value of each pixel with the vector along the diagonal of

the RGB cube (0, 0, 0) → (1, 1, 1). As shown in Fig. 8

(bottom-right), this measurement can highlight the colored

objects with less noise and more proportional intensity than

the saturation channel. The tracker is automatically initialized

with the points computed by the contour detector (Fig. 9).

As long as the result of the tracker is valid, it is used for

the servoing task. If the tracker fails, it will be reinitialized

again with the points of the detector.

The combination between contour detection and edge

tracking produces a solid result for the image points used in

the servoing task. If the tracker fails and the detector cannot

be re-initialized, the system falls back to manual control.

IV. EXPERIMENTS

As stated before, the employed robot is the MIRA SPS,

a mobile manipulator composed of an aluminum wheeled

platform, nj = 4 Mecanum wheels, and a Kinova JACO



Fig. 10. First experimental result of the visual servoing test, achieved with
k = 1 and ωlim = 0.05. Top graph shows image plane features evolution,
while bottom graph shows error norm evolution.

6S arm. The employed motors are Maxon EC-4 200W 14-1,

driven by Elmo Ethercat PELM027 drivers. Robot maximum

linear forward velocity is 2 m/s, while slip-speed was found

at 0.4 m/s on SPS tunnel’s floor. Referring to (1), the

parameters are a = 18.3 cm, b = 13.95 cm, and RM =
7.5 cm. The whole robot dimensions are 52 × 35 × 19 cm

and it weights 40 kg.

Experiments were conducted in the laboratory using a

mockup of the door. A video of the experiments can be

found at the following link1. The camera stream was set

at 12.5 frames per second, with a resolution of 1920 ×
1080 pixels. The onboard computer is a Lenovo M90n-1,

with an integrated graphical unit.

The gain matrix Ks has been experimentally tuned to

Ks = diag(k, k, ..., k), with k > 0 varying in the addressed

case studies. Other choices, such as Ks = diag(k, k, ..., 2k),
are useful to boost the rotational movement over others. This

is particularly effective when ζCC,F detection is not accurate.

The following experiments show the behavior with differ-

ent values of k and ωlim, given the same starting pose A and

the same aligned pose B. The top pictures in Fig. 10-13 show

the detected corner points movement across the image plane

while moving to reach the goals (the black stars). Instead,

the bottom pictures show the not normalized error norm.

The algorithm stops when the error norm, |es|, is below the

threshold of 0.03: this was found to be the best trade-off

value between alignment time and precision. Values higher

than 0.04 do not guarantee gate crossing. Blank spots in

graphs are due to outliers’ cancellation.

The first experiment is carried out by choosing k = 1 and

ωlim = 0.05. With reference to Fig. 10, it clearly shows that

error evolution is stable. It can be split into a settling phase

and a fine-alignment phase. The whole alignment takes 36 s

because of the low value of ωlim. Since k is low as well,

1https://youtu.be/N0FE8g50Qik

Fig. 11. Second experimental result of the visual servoing test, achieved
with k = 5 and ωlim = 0.05. Top graph shows image plane features
evolution, while bottom graph shows error norm evolution.

Fig. 12. Third experimental result of the visual servoing test, achieved with
k = 1 and ωlim = 0.2. Top graph shows image plane features evolution,
while bottom graph shows error norm evolution.

the fine-alignment (small corrections that start at 17 s) takes

half of the total time. Detected points move smoothly on the

image plane, reflecting the robot’s untroubled movement.

The second experiment sees the value of k increased by 5
times, that is k = 5 and ωlim = 0.05. Plots are depicted

in Fig. 11, showing how fine-alignment overtime can be

canceled. The total time is 16 s, and the movement on the

image plane is smooth.

In the third experiment, compared to the first one, only

ωlim increased: k = 1 and ωlim = 0.2. The settling

alignment duration is reduced from 17 s to 5 s (see Fig. 12).

However, the fine-alignment duration is larger than the first

case: this also reflects a harsher motion in the image plane.

In the fourth experiment, a trade-off between k and ωlim

was considered, with k = 2 and ωlim = 0.1. Settling time is

https://youtu.be/N0FE8g50Qik


Fig. 13. Fourth experimental result of the visual servoing test, achieved with
k = 2 and ωlim = 0.1. Top graph shows image plane features evolution,
while bottom graph shows error norm evolution.

9 s, while no fine-alignment is needed. Points evolution on

the image plane is not too harsh (see Fig. 13).

In each experiment, tracked points in the image plane

do not cause large motions that can cause features to exit

the field of view. Noise is instead caused by movement

vibrations, platform drifting (due to non-perfect flatness of

the ground), and detection displacements.

In the first and third experiments, Fig. 10 and Fig. 12,

respectively, the errors evolution reaches local minima before

starting the fine-alignment phase. Increasing the threshold

stop value reduces the servoing time drastically. Neverthe-

less, the abrupt speed changes of the settling phase lead to

platform slippage, invalidating the alignment.

V. CONCLUSION

We addressed the problem of crossing narrow doors in a

semi-structured environment. We employed a visual servoing

approach where the point features are extracted from a robust

detector and tracker of the edge lines of a colored contour.

The points are obtained from the intersections of the lines.

A novel color segmentation based on the distance of the

pixel colors to the diagonal of the RGB cube is proposed as

an alternative to the intensity or saturation channels of the

image. The devised solution was tested in the CERN’s SPS:

a mobile robot platform is equipped with a lightweight arm

to perform inspection and maintenance tasks remotely driven

by an operator. We showed the ability to drastically reduce

crossing time with smooth movements: 30 s (alignment, arm

lowering, forward movement, arm raising), versus 2 minutes

of the teleoperation case.
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