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Building Volumetric Beliefs

for Dynamic Environments Exploiting

Map-Based Moving Object Segmentation
Benedikt Mersch, Tiziano Guadagnino, Xieyuanli Chen, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss

Abstract—Mobile robots that navigate in unknown environ-
ments need to be constantly aware of the dynamic objects in their
surroundings for mapping, localization, and planning. It is key
to reason about moving objects in the current observation and
at the same time to also update the internal model of the static
world to ensure safety. In this paper, we address the problem
of jointly estimating moving objects in the current 3D LiDAR
scan and a local map of the environment. We use sparse 4D
convolutions to extract spatio-temporal features from scan and
local map and segment all 3D points into moving and non-moving
ones. Additionally, we propose to fuse these predictions in a
probabilistic representation of the dynamic environment using
a Bayes filter. This volumetric belief models, which parts of the
environment can be occupied by moving objects. Our experiments
show that our approach outperforms existing moving object
segmentation baselines and even generalizes to different types
of LiDAR sensors. We demonstrate that our volumetric belief
fusion can increase the precision and recall of moving object
segmentation and even retrieve previously missed moving objects
in an online mapping scenario.

Index Terms—Mapping; Computer Vision for Transportation;
Intelligent Transportation Systems

I. INTRODUCTION

S
EGMENTING moving and non-moving objects is key for

mobile robots operating in dynamic environments. It is

an important step for online applications like mapping [33],

[38], localization [14], [31], planning [21], or occupancy

prediction [15]. To solve such tasks, a robot needs to reason

about which parts of the environment are moving and which

are not in an online fashion. For successful navigation and

planning, this knowledge should not only be limited to what

the robot currently perceives but rather be integrated into a

representation of the environment.

In this paper, we investigate the problem of segmenting

moving objects in both current and past 3D LiDAR scans.

Additionally, we maintain a 3D model of the environment

representing our belief about which part of the space can
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Fig. 1: Our approach identifies moving objects (red) in the current
scan (blue) and the local map (black) of the environment. We maintain
a volumetric belief map representing the dynamic environment and
fuse new predictions in a probabilistic fashion. This allows us to
reject false positive predictions that contradict our volumetric belief.

contain moving objects as depicted in Fig. 1. We update

the belief online by fusing our predictions in a probabilistic

manner to increase precision and recall of moving object

segmentation (MOS). Also, for simultaneous localization and

mapping (SLAM), it is of central interest to estimate, which

parts of the environment are dynamic. The knowledge of

moving objects can be directly integrated into the optimization

as an object motion estimation as shown by Henein et al. [14],

in this example done for rigid body motion. Pfreundschuh et

al. [31] and Chen et al. [7], [9] demonstrate the effectiveness

of moving object segmentation for data associations. An

alternative strategy for localization and long-term planning is

to build a map and clean it from traces of dynamic objects

in a post-processing step, [1], [2], [18], [22]. Thus, the ad-

dressed estimation problem has multiple relevant applications

in robotics.

If building a static map is required online, one way is to

segment each incoming scan into moving and non-moving

and then integrate only the static points into the map [7].

In this setup, each segmentation is done independently of
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previous predictions. The downside of this approach is that

it is not straightforward to recover a missed moving object

that was added to the map. Recently, 4DMOS [25] improved

the segmentation robustness by re-estimating moving objects

in a scan after receiving more observations and fusing them

in a binary Bayes filter. However, the MOS robustness can

only be improved as long as the corresponding scan is within

the limited buffer of past scans that 4DMOS and related

approaches consider for prediction. Also, the idea of using

a local buffer assumes that the movement of an object can be

identified from consecutive measurements. This usually holds

for most rotating LiDAR scanners that scan the surroundings

with a regular scanning pattern at high frequency, but not for

scanners with a limited field of view or irregular sampling

patterns [23].

The main contributions of this paper are two-fold. First, we

propose an approach to predict moving objects in a local map

constructed using all past LiDARs measurements recorded

in this area without limiting the time horizon. Second, we

build and maintain a volumetric belief map and fuse new

predictions in a voxel-wise binary Bayes filter to previous

estimates online, which increases robustness and corrects

previously wrong predictions. In sum, we make four key

claims: Our approach is able to (i) accurately segment an

incoming LiDAR scan into moving and non-moving objects

based on a local map of past observations, (ii) generalize well

to new environments and sensor setups while achieving state-

of-the-art performance, (iii) increase the precision and recall

of moving object segmentation by fusing multiple predictions

into a volumetric belief, (iv) recover from wrong predictions

for online mapping through a volumetric belief. These claims

are backed up by the paper and our experimental evaluation.

Our code, pre-trained models, and labels for evaluation are

available at https://github.com/PRBonn/MapMOS.

II. RELATED WORK

Online LiDAR MOS is usually achieved by comparing the

current scan against the past, with the goal of segmenting

the corresponding point cloud into moving and non-moving

parts [8], [25]. Yoon et al. [42] identify moving objects based

on the residual between two scans, free space filtering, and

region growing post-processing. One drawback of such an

approach is that objects can be temporarily occluded, which

makes it hard to identify motion only considering two scans.

Subsequent works extend the temporal horizon of past

information that is used for prediction. Processing more points

at full resolution is often computationally demanding. There-

fore, most methods project the data into a lower-dimensional

representation [7], [19], [36]. Chen et al. [7] use past residual

images together with a semantic segmentation network to

segment a range-image representation of the scan into moving

and non-moving. Work by Kim et al. [19] extends this idea

by additionally predicting movable and non-movable objects

from semantics. Sun et al. [36] propose a point refinement

module to reduce the effect of imprecise boundaries, some-

times referred to as “label bleeding” for range image-based

segmentation [26].

The problem of label bleeding is also addressed

in 4DMOS [25] by predicting moving objects in the voxelized

4D space without prior projection. It assumes that the motion

of an object is visible within a limited time horizon of

consecutive past scans, which are aggregated to a sparse 4D

point cloud. By shifting this temporal window, the prediction

of previous scans can be refined by fusing them in a point-wise

binary Bayes filter. To reduce the effort of labeling, Kreutz et

al. [20] proposed a feature encoding and clustering approach

based on a 4D occupancy time series.

Similar to 4DMOS, we extract spatio-temporal features us-

ing 4D convolution instead of projecting the data. In contrast to

the aforementioned methods [7], [19], [25], [36], our proposed

approach predicts moving objects using the current scan and a

voxelized local point cloud of all past scans without limiting

the time horizon.

Static Map Building – A standard approach to obtain a

static model of the environment is to only integrate static

points based on a scan-wise MOS [7]. Other researchers fo-

cused on geometric approaches to obtain a static representation

of the environment. For example, occupancy maps divide the

space into occupied, free, and unobserved areas [37]. The

static belief of voxels is updated by ray-tracing and recursive

Bayesian estimation using an inverse sensor model [37]. The

final map can be used to decide if a new measurement belongs

to a dynamic object or not [40]. Stachniss and Burgard [35]

propose an approach for 2D grid-based localization in non-

static environments by clustering possible configurations of the

changing environment which improves localization. To cover

the full spectrum of temporal changes in the environment,

Biber and Duckett [5] update a map based on different time

scales.

In contrast, Nuss et al. [29] propose to use random finite sets

to explicitly model the dynamic state of each grid cell, which

has been further used for tasks like occupancy prediction [15].

To deal with 3D LiDAR data, Wurm et al. [41] and Hornung et

al. [16] introduced OctoMap which extends occupancy grid

mapping to the 3D space by using an octree data structure.

Ray-tracing on volumetric occupancy grids has also been

researched to remove dynamic objects from a set of LiDAR

scans [12], [34]. Similarly, Pagad et al. [30] use an octree

to build an occupancy grid map by first detecting ground and

object points and using ray-tracing to update voxel occupancy.

Arora et al. [1], [2] exploit OctoMap for static map cleaning

and leverage ground-segmentation and a voting scheme to deal

with unknown points.

Visibility-based methods [18], [22], [32] alleviate the com-

putational cost of ray-tracing by checking the consistency of

a query point with respect to a pre-built map. For example,

Lim et al. [22] identify temporarily occluded regions in an

accumulated point cloud map based on height discrepancy

between query and map. Instead of removing dynamic points,

Huang et al. [17] explicitly target the reconstruction of moving

objects for 3D scene analysis. To deal with the sparse mea-

surements from moving objects, the authors register multiple

point clouds and estimate offset vectors of previously classified

moving points.

In our work, we aim at closing the gap between scan-wise

https://github.com/PRBonn/MapMOS


MERSCH et al.: BUILDING VOLUMETRIC BELIEFS FOR DYNAMIC ENVIRONMENTS EXPLOITING MAP-BASED MOVING OBJECT SEGMENTATION 3

online MOS and an offline volumetric representation of the

dynamic environment. We propose an approach that segments

the current scan as well as previously received measurements

into moving and non-moving points and fuses these predictions

in a 3D volumetric representation. In contrast to most of the

aforementioned approaches, we maintain this belief online

and use it to robustify the current prediction and to retrieve

previously missed moving objects for online mapping.

III. OUR APPROACH

We propose to segment moving objects based on the dis-

crepancy between the current LiDAR frame and a local map

consisting of the previously measured scans in that area. Given

the current LiDAR frame at time t, we first register it to our

current local map as explained in Sec. III-A. Next, we jointly

predict moving objects in the aligned scan and the local map,

see Sec. III-B. After that, we fuse these predictions into a

probabilistic volumetric belief to maintain a representation of

the dynamic environment, see Sec. III-C. We can query the

volumetric belief for a set of points as explained in Sec. III-D

to obtain the current belief if these points belong to moving

objects or not.

A. Scan Registration with KISS-ICP

Our approach does not require ground truth poses, it only

relies on sequential 3D LiDAR data. When a new measurement

is available, we register the scan using KISS-ICP [39], which

is a robust odometry pipeline that generalizes well to varying

motion profiles and sensor platforms without the need for

changing parameters.

Our local map used within this paper is a sparse voxel grid

as the one of KISS-ICP. We maintain the original coordinates

of the points in the voxels to avoid discretization errors.

In contrast to the original KISS-ICP implementation, we

additionally store for each point the timestamp of the scan

it stems from to maintain temporal information in the local

map. Our method directly uses this temporal information to

predict moving objects for both the registered scan and the

local map.

B. Map-based Moving Object Segmentation

We start by explaining how to jointly predict moving objects

after registering a new LiDAR frame. We exploit two different

mechanisms to segment moving objects. First, we consider the

spatial discrepancy between the current scan and the local map.

This information indicates if an object may have moved with

respect to all previous measurements in that area. Second, we

identify the motion of objects based on the evolution of the

timestamps given by the feature attached to each point. This

allows us to segment both the current scan and the local map

into moving and non-moving parts.

In contrast to previous works [7], [19], [25], [36], our

method is not restricted to a fixed set of past scans. This is

advantageous in cases a moving object is not fully visible

within a short time horizon due to occlusion, limited field

of view, or an irregular shooting pattern of the LiDAR. In

practice, this makes a substantial difference.

Current Scan

Local Map

Moving

Time t

Prediction

Time t+1 s

Fig. 2: Current Scan and local map for two different times with
our moving predictions in red. Although our method initially failed
to fully identify the moving pedestrian in the beginning (left), we
successfully predict it at a later point in time and our method
backtraces the corresponding points in the local map (right).

Additionally, instead of predicting moving objects in the

current scan or a limited buffer of scans, we segment both

the current scan and the local map. Segmenting the local

map enables us to identify traces of moving objects that were

not segmented in previous scan predictions. This backtracing

of dynamic objects allows us to correct initial false negative

predictions as shown in Fig. 2.

Our local map is the voxel grid structure of KISS-ICP,

but we store for every point its 4D coordinate (position plus

time). To maintain the ordering of scan and local map during

the convolutions, we organize them in a 4D tensor. We use

the timestamps as features for the points and normalize them

based on the minimum and maximum values since we are

only interested in their relative difference. This avoids the

model overfitting to the sequence lengths and, therefore, the

maximum timestamps it has seen during training.

At time t, we voxelize the 4D point cloud Pt of scan and

local map and represent it as a sparse 4D tensor using the

MinkowskiEngine [10]. Sparse tensors are a more memory-

efficient representation for 4D tensor data and allow to directly

apply sparse convolutions. We jointly extract spatial and

temporal features with sparse 4D convolutions. Our network

architecture is a 4D MinkUNet [10] with 1.8Mio parameters.

This network first downsamples the points and features in an

encoder to extract high-level information and then upsamples

both to the original resolution in a decoder. Residual blocks

and skip connections help to maintain detailed information

about the points and their corresponding features. The last

layer predicts the logits St of both current scan and local

map points being moving. Fig. 3 depicts an overview of our

approach.

C. Volumetric Belief Update

In this section, we present our approach to fuse per-

point MOS predictions into a probabilistic volumetric belief.

Fusing multiple independent predictions over time can filter

out prediction errors from the neural network and has been

previously explored on the point-level [25]. Instead of fusing

per-points predictions, our goal is to model, which parts of the

environment have a higher probability of containing a dynamic

object. Notice that in this case, we do not want to just identify

current dynamics, but rather determine which portion of the

map is traversed by moving objects. We define this property

as dynamic occupancy.
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Fig. 3: Overview our proposed Scan2Map moving object segmentation approach and volumetric belief fusion. At time t, we predict moving
objects in the current scan and local map using sparse 4D convolutions. Next, we update our volumetric belief about which parts of the
environment can contain moving objects based on the previous volumetric belief at time t− 1 and our new predictions.

We assume that the binary state mi ∈{0, 1} of dynamic

occupancy for a voxel vi does not change over time. Intu-

itively, this means that if a point falls into a voxel previously

occupied by dynamics, we assume that this point also belongs

to a moving object. On the other hand, if a voxel was occupied

by static points, we do not expect to observe a moving object

in this volume. Note that this state definition is different from

occupancy grid mapping, where the world is assumed to be

static and a fixed occupancy probability of a cell is estimated.

At time t, we predict N logits St = {st,1, st,2, . . . st,N}
with st,j ∈R for N points Pt = {pt,1,pt,2, . . .pt,N}
with pt,j ∈R

4 as described in Sec. III-B. It is possible to

fuse the logits for the current scan but also for the local

map points. We provide an experiment in Sec. IV-D to

showcase the results for different fusion strategies. Note that

our volumetric belief is not restricted to our logits, but that

predictions from different sources could be integrated. Our

goal is to estimate the joint probability distribution of the

volumetric belief map state for all voxels M= {mi} reading

p (M | P1:t,S1:t) =
∏

i

p (mi | P1:t,S1:t) , (1)

with P1:t and S1:t being the sets of previously measured points

and predicted logits up to time t, respectively.

After applying Bayes’ rule to the right-hand side per-voxel

probability distribution, we can derive the recursive binary

Bayes filter equations according to Thrun et al. [37]. We use

the log-odds notation l(x)= log p(x)
1−p(x) resulting in

l (mi | P1:t,S1:t) = l (mi | P1:t−1,S1:t−1)

+ l (mi | Pt,St)− l(mi),
(2)

for updating a single voxel cell belief l (mi | P1:t,S1:t).
Here, l (mi | P1:t−1,S1:t−1) is the recursive term currently

stored in the voxel, which aggregates the previous predic-

tions, l (mi | Pt,St) is the update term for the voxel which

integrates the predictions at the current time t, and l(mi) are

the log-odds of the prior probability p0. We do not assume

to have prior knowledge about the dynamic occupancy of a

voxel vi and therefore set it to p0 = 0.5.

The remaining step is to get a per-voxel

update l (mi | Pt,St) from the points Pt and logits St.

The prediction st,j ∈ St at time t for a single point pt,j with

index j indicates if it belongs to a moving object or not.

Since multiple points with different logits can end up in the

same voxel, we need to aggregate their information and take

the arithmetic mean of logits inside a voxel i resulting in

l (mi | Pt,St) =

∑
j∈Vt,i

st,j

|Vt,i|
, (3)

where Vt,i = {j | pt,j ∈ vi} is the set of points falling into the

voxel vi at time t and |Vt,i| is the cardinality of the set. Taking

the arithmetic mean of per-point log-odds corresponds to the

geometric mean of the individual likelihoods of a point being

moving. Likelihood aggregation using the geometric mean has

been previously used in Monte-Carlo localization sensor model

designs [43].

We implement our volumetric belief as a hash table, which

is a more memory-efficient representation compared to dense

3D arrays, [28], [39]. Each 3D voxel vi stores the log-

odds belief l (mi | P1:t,S1:t) about its dynamic occupancy

state mi ∈{0, 1} after integrating predictions up to time t.

D. Volumetric Belief Query

For a given set of points, we can query our volumetric belief

by indexing the corresponding voxels vi and converting the

log-odds beliefs l (mi | P1:t,S1:t) to a posterior probability p

using p(x)= el(x)

1+el(x) . We assume that a point is moving if the

probability is larger than 0.5. Note that the voxel size of our

volumetric belief needs to be appropriate since the underlying

assumption is that all points inside a voxel share the same

dynamic occupancy state. This assumption is violated if the

voxel size is too large.
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E. Online Mapping

For online mapping, we are interested in accurately remov-

ing moving points. We experienced discretization effects at

the boundaries of moving objects, for example, false negative

predictions on the wheels of vehicles close to the ground. To

achieve sub-voxel accuracy and a high recall for identifying

moving objects, we combine the filtered voxel-wise volumetric

belief with the point-wise scan prediction for online mapping.

We demonstrate this in an experiment in Sec. IV-E.

F. Implementation Details

We set the voxel size used for downsampling the scans

in our odometry system to 0.5m. We train our 4D CNN by

supervising the prediction for scan and local map points using

the cross-entropy loss for 100 epochs and save the model

performing best on the validation set. Since some sequences of

the training set do not contain a lot of moving objects, we skip

a batch if the ratio between moving and static points is less

than 0.1%. Next, we crop a rectangular patch of the scenes and

augment the batch by rotating, flipping, and scaling. Lastly, we

randomly drop points with a dropout rate sampled from the

interval [0, 0.5] to vary the density of the point clouds. One

epoch takes less than 25 min on an NVIDIA RTX A5000.

For choosing a voxel size of our volumetric belief map,

one needs to trade off between computational efficiency and

accuracy due to the discretization. For our experiments, we

set the fixed voxel size to 0.25m. Additionally, we clip the

volumetric belief map at 150m.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is an approach to identify

moving objects in the current LiDAR frame and a local

map of aggregated past scans and to fuse these predictions

into a probabilistic volumetric belief map. We present our

experiments to show the capabilities of our method. The results

of our experiments also support our key claims, which are:

Our approach (i) accurately segments an incoming LiDAR

scan into moving and non-moving objects based on a local

map of past observations, (ii) generalizes well to new envi-

ronments and sensor setups while achieving state-of-the-art

performance, (iii) increases the precision and recall of MOS

by fusing multiple predictions into a volumetric belief, (iv)

recovers from wrong predictions for online mapping through

a volumetric belief.

A. Datasets, Metrics, and Baselines

For the following experiments, we train all models on

the moving labels of the SemanticKITTI [3], [4] training

sequences 00-07 and 09-10 and use sequence 08 for valida-

tion. We do not use the KITTI pose information since our

approach registers the scans using KISS-ICP [39] as described

in Sec. III-A.

Besides the commonly used SemanticKITTI MOS bench-

mark [7] based on the SemanticKITTI labels, we also evaluate

and compare our approach on a labeled sequence from the

KITTI Tracking [13] dataset recorded with the same sensor

Method Test 11-21 Validation 08

LMNet [7] 58.3 66.4
MotionSeg3D, v1 [36] 62.5 68.1
MotionSeg3D, v2 [36] 64.9 71.4
4DMOS, delayed [25] 65.2 77.2
Ours, Scan 65.9 83.8
Ours, Volumetric Belief 66.0 86.1

RVMOS [19]∗ 73.3∗ 71.2∗

TABLE I: Comparison of average moving IoU on the SemanticKITTI
validation sequence 08 and the SemanticKITTI MOS benchmark [7].
Best results in bold. The ∗ indicates that the approach additionally
exploits semantic labels.

setup in a street with a lot of moving pedestrians. We addi-

tionally report results on a subset of the Apollo Columbia Park

MapData [24] with labels provided by Chen et al. [8]. This

data is recorded with the same sensor, but in a different city

environment.

To push the generalization capabilities of MOS approaches,

we test the models trained on SemanticKITTI with 64 vertical

beams at 10Hz frequency on the nuScenes [6] dataset, which

has 32 vertical beams at 20Hz. We evaluate the MOS for

nuScenes based on the moving labels from the annotated

keyframes of the 150 validation sequences.

We assess the performance using the commonly

known intersection-over-union (IoU) [11] of the moving

points and additionally precision and recall in Sec. IV-D.

We compare our method to the projection-based baselines

LMNet [7], MotionSeg3D [36], and RVMOS [19]. For Mo-

tionSeg3D, we show the results without (v1) and with the pro-

posed point refinement (v2). 4DMOS [25] applies sparse 4D

convolutions, but on a limited buffer of aggregated, registered

past scans.

B. Moving Object Segmentation Performance

In the first experiment, we evaluate how well our approach

segments a scan into moving and non-moving points by using

a local map of past observations. We show the originally

reported baseline results on the SemanticKITTI validation

set and the SemanticKITTI MOS benchmark. To provide

fair comparisons, we only consider approaches, which are

trained and validated on the original SemanticKITTI split.

This eliminates the positive bias of using additional training

data [8], [36].

We evaluate both the predictions of the current scan (re-

ferred to as “Scan”) and the volumetric belief with a delay

of 10 scans (referred to as “Volumetric Belief”). The choice

of 10 scans is an initial estimate that trades off the ability

to correct previous wrong estimates and the required waiting

time. Besides fusing all scan predictions, we decide to only

integrate the local map points that we predict to be moving.

This has two reasons: First, we are mainly interested in the

moving objects in the local map that we have missed in

previous scan predictions. Second, integrating all local map

points reduces the runtime of the system. The delay of 10

scans helps to get a more informed belief about the voxels

with additional local map predictions before querying their

state.
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One can see in Tab. I that our volumetric belief helps to

improve the results on the validation sequence, whereas the

effect is smaller on the test set. We further investigate the

effect of the volumetric belief in Sec. IV-D. Our approach out-

performs 4DMOS, showing that not limiting past information

is beneficial for MOS. In general, we rank second best on the

hidden test set and are only outperformed by RVMOS, which

requires additional semantic labels for training, while all other

approaches just use the moving object labels. Our approach

using the volumetric belief achieves the highest result on the

validation set with 86.1% IoU for the moving points.

Our MOS model runs at 12 Hz for the SemanticKITTI MOS

benchmark using an NVIDIA RTX A5000. We implemented

the volumetric belief update and querying in C++ and it runs

at 44 Hz on a Intel(R) Xeon(R) W-1290P CPU @ 3.70 GHz

processor with multi-threading.

C. Generalization Capabilities

The next experiment analyzes how well our approach gen-

eralizes to new environments and sensor setups. Since MOS

is often a supervised task and labeling is expensive, gener-

alization is an important property. We provide an experiment

in Tab. II that realizes different levels of domain shift and

compare how well the approaches generalize.

All baselines require external pose information, which we

acquire using KISS-ICP for a fair comparison. Note that in

the case of 4DMOS, we also report the result of segmenting

the most recent scan to compare the online performance before

refining with the originally proposed receding horizon strategy

and binary Bayes filter. Unfortunately, the code for RVMOS is

not publicly available so we cannot run it on these additional

datasets.

One can see that the projection-based approaches LMNet

and MotionSeg3D perform worse on the highly crowded

KITTI Tracking sequence 19. Their performance drops even

further on the Apollo dataset. We believe this is because they

implicitly overfit to the calibration of the LiDAR sensor, such

as mounting location and intensity measurements.

In contrast, 4DMOS and our approach only use the temporal

information of the scans and therefore generalize well to a

new sensor calibration. We again obtain the best result using

our volumetric belief with a delay of 10 scans (referred to as

“Volumetric Belief”) and outperform 4DMOS.

For the nuScenes dataset, we cannot evaluate the pre-trained

models for the projection-based approaches in a fair com-

parison, because the range image dimensions change due to

the different vertical resolutions of the sensors. Both 4DMOS

and our approach are still able to segment moving objects,

but the average moving IoU is lower. Here, the strategy of

4DMOS shows the best results. When comparing the current

scan predictions only, we again achieve a better result in terms

of moving IoU.

D. Volumetric Belief

Next, we carry out experiments that show how our proposed

volumetric belief can improve moving IoU, recall, and preci-

sion. We compare the prediction of our model for the current

KITTI [13] Apollo [24] nuScenes [6]
Method Tracking 19 Validation

LMNet [7] 45.3 13.7 n/a
MotionSeg3D, v1 [36] 54,6 6.5 n/a
MotionSeg3D, v2 [36] 54,8 8.8 n/a
4DMOS, delayed [25] 75.5 70.9 44.8

4DMOS, online 71.1 68.7 34.6
Ours, Scan 77.0 79.2 36.8
Ours, Volumetric Belief 78.4 81.7 40.3

TABLE II: Generalization capabilities of different methods on
datasets outside of the training distribution. We report the average
moving IoU. Best results in bold.

scan (referred to as “Scan”) to our volumetric belief after

fusing only the scan prediction (referred to as “Volumetric

Belief, Scan Only”).

One can see from Tab. III that the probabilistic fusion using

a binary Bayes filter consistently increases the precision of

our scan prediction by rejecting false positives in previously

predicted regions. At the same time, the recall drops due

to the discretization error between ground points and the

boundary of moving objects. Next, we additionally fuse the

local map points that we predict to be moving (referred to

as “Volumetric Belief, No Delay”). The results indicate that

additionally fusing the local map predictions increases the

recall compared to the volumetric belief that only integrates

scan predictions.

Our last setup (referred to as “Volumetric Belief”) first

integrates 10 scan and moving local map predictions into our

volumetric belief before querying it for evaluation as explained

in Sec. IV-B. This setup again achieves the best result in terms

of IoU on most of the sequences since we can now use the

local map predictions to identify traces of moving objects

and update the volumetric belief accordingly, even if the

previous scan-based prediction was static. Solely in the case

of Apollo, the setup using the volumetric belief only fusing

scan predictions is slightly better in terms of moving IoU.

Since the recall of moving objects in the scan predictions is

already very high for Apollo, we believe that the negative

impact of discretization errors from additionally fusing moving

local map points is more dominant in the final IoU than the

improvement from correcting false negatives.

E. Online Mapping

Finally, we analyze how we can use our approach and

the corresponding volumetric belief for online mapping. We

use the VDBFusion [38] library that provides a TSDF-based

reconstruction pipeline using the VDB data structure to build

a final 3D model [27]. We show the results in Fig. 4 for the

CYT 02 sequence [23] (top row) and for the KITTI Tracking

sequence 19 (bottom row). The CYT 02 data was obtained

with a Livox MID40 scanner, which has a smaller field of

view and an irregular sampling pattern compared to rotating

3D LiDARs. This makes it harder to identify moving objects

from a limited sequence of frames.

The first column shows the reconstructed surfaces from

integrating all scans, including moving points. One can see

the traces of moving objects in the map which are undesirable

for planning.
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SemanticKITTI [4], [7] KITTI [13] Apollo [24] nuScenes [6]
Validation 08 Tracking 19 Validation

Method IoU R P IoU R P IoU R P IoU R P

Scan 83.8 87.5 95.3 77.0 84.6 89.6 79.2 93.0 84.5 36.8 43.4 70.0
Volumetric Belief, Scan Only 84.0 86.4 96.8 76.7 80.3 94.4 82.1 92.3 88.6 36.6 40.8 81.1

Volumetric Belief, No Delay 83.9 86.7 96.3 76.9 81.8 92.8 81.3 92.4 87.7 36.9 41.7 79.4
Volumetric Belief 86.1 88.7 96.8 78.4 83.4 92.9 81.7 92.9 87.7 40.3 45.7 77.9

TABLE III: Ablation study on average moving IoU, recall (R), and precision (P) in % for our scan-based prediction and different volumetric
belief fusion strategies.

The middle column shows the reconstruction after integrat-

ing the static predictions from 4DMOS using the receding

horizon strategy. Although 4DMOS removes most of the

dynamic traces, some moving objects remain in the map, as

indicated by the solid markers in Fig. 4. When used with the

Livox scanner, 4DMOS removes a lot of static points due to

the irregular sampling pattern and the limited number of past

scans as encircled by the dashed marker in Fig. 4. We show

our final map in the right column.

Based on the high recall achieved in Sec. IV-D, we query

the volumetric belief after fusing 10 scan and local map pre-

dictions. To additionally handle the discretization error close

to the ground as explained in Sec. III-E, we only integrate

points for which both the map belief and the corresponding

scan prediction are static. By doing so, we can achieve sub-

voxel accuracy and even remove moving points that are close

to the ground.

V. CONCLUSION

In this paper, we presented a novel approach to segment

moving objects in the current scan and local map. We use

a sparse 4D CNN to jointly extract spatio-temporal features

based on the discrepancy between scan and map as well as the

relative timestamps between points. Additionally, we suggest

fusing our predictions into a probabilistic volumetric belief.

This allows us to successfully segment moving objects and

even recover from false positive predictions. We evaluated our

approach on different datasets with different sensor setups and

demonstrated its effectiveness and generalization capabilities.

Finally, we carried out experiments to evaluate the impact of

our volumetric belief and show that it improves the precision

and recall of our MOS and can be effectively used to construct

a static representation of the environment online.
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