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IR-MCL: Implicit Representation-Based

Online Global Localization
Haofei Kuang Xieyuanli Chen Tiziano Guadagnino Nicky Zimmerman Jens Behley Cyrill Stachniss

Abstract—Determining the state of a mobile robot is an
essential building block of robot navigation systems. In this
paper, we address the problem of estimating the robot’s pose
in an indoor environment using 2D LiDAR data and investigate
how modern environment models can improve gold standard
Monte-Carlo localization (MCL) systems. We propose a neural
occupancy field to implicitly represent the scene using a neural
network. With the pretrained network, we can synthesize 2D
LiDAR scans for an arbitrary robot pose through volume
rendering. Based on the implicit representation, we can obtain
the similarity between a synthesized and actual scan as an
observation model and integrate it into an MCL system to
perform accurate localization. We evaluate our approach on self-
recorded datasets and three publicly available ones. We show
that we can accurately and efficiently localize a robot using our
approach surpassing the localization performance of state-of-the-
art methods. The experiments suggest that the presented implicit
representation is able to predict more accurate 2D LiDAR scans
leading to an improved observation model for our particle filter-
based localization. The code of our approach will be available
at: https://github.com/PRBonn/ir-mcl.

Index Terms—Localization, Deep Learning Methods

I. INTRODUCTION

LOCALIZING a robot on a known map is a key capability

often needed by mobile robots deployed in indoor envi-

ronments. For such indoor localization, we often need a map

representation of the scene to establish an observation model

to correct the pose estimate of a probabilistic localization

algorithm, such as Monte-Carlo localization (MCL) [5]. The

map representation quality and the observation model’s design

are critical for localization accuracy.

Recently, learning-based methods are widely used in the

computer vision domain for representing the surrounding [19],

[26], [27]. Among these works, Mildenhall et al. [19] propose

the seminal work of neural radiance fields (NeRF), which

learns an implicit function to encode the environment that

can be used to generate novel views at new poses using

volumetric rendering. The generated views show a high fi-

delity including direction-dependent illumination effects and

attracted increasing interest in the computer vision community.

Moreover, the implicit representation encoded by a neural
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Fig. 1: Given a set of particles and a real scan from 2D LiDAR, we
establish an observation model with a pretrained neural representation
for accurate robot global localization.

network has appealing properties also relevant for robotics

applications: They offer a compact representation that only

needs to store the parameters of the trained neural network,

and they can generalize well to locations not seen during the

training. Recently, multiple works [6], [16], [23], [33], [43]

have been proposed to leverage depth information to impose

stronger geometric constraints. In this work, we are interested

in global localization using 2D LiDAR sensors commonly

employed in indoor robotics. In indoor environments, occu-

pancy grid maps [34] are widely used to explicitly represent

the environment. However, the discrete nature of occupancy

maps can cause loss of scene details, which potentially leads to

an inaccurate observation model of probabilistic localizations

algorithms [5] and consequently inaccurate localization results.

The main contribution of this paper is the use of an im-

plicit NeRF-based representation of the environment for MCL

together with an observation model exploiting this implicit

representation. It tackles the limitation of the discrete occu-

pancy grid map and improves the localization accuracy. Our

proposed method represents the 2D world using an implicit

function through a neural occupancy field, named NOF. It

exploits a multi-layer perceptron (MLP) to encode the 2D

world. Given a location, the MLP outputs the corresponding

occupancy probability. Based on that, our method then uses

a ray casting-based rendering algorithm to synthesize a range

scan for an input sensor pose, see Fig. 1 for an illustration. We

train the NOF by comparing the rendered synthetic scan to the

real sensor measurements. We use the NOF to build a novel

observation model for MCL [5]. For each particle in MCL,

we use our NOF to render a synthetic view and compare it to

the current observation to update the particle weight. We call

our global localization system implicit representation-based

MCL (IR-MCL).

https://github.com/PRBonn/ir-mcl
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In summary, we make the following three key claims: (i) we

are able to build an effective observation model based on

the proposed implicit representation of the environment for

2D LiDAR-based (global) localization; (ii) we achieve state-

of-the-art localization performance compared to approaches

using occupancy grid maps; (iii) our approach converges fast to

globally localize a robot and operates online. We support these

claims by our experimental evaluation on multiple datasets.

II. RELATED WORK

For global localization and pose tracking, Dellaert et al. [5]

propose using particle filters to realize Monte-Carlo localiza-

tion. MCL is still the gold standard for robot localization and

often uses LiDARs [5], [8], [32], [37], cameras [5], [2], or

WiFi [14]. Fox et al. [8] propose an adaptive sampling strategy

for MCL to significantly improve its efficiency. Yilmaz et

al. [40] propose self-adaptive MCL which is improved to make

the algorithm suitable for autonomous vehicles. Such MCL

methods often use a 2D LiDAR sensor and an occupancy grid

map to estimate the robot’s pose and are quite robust.

Recent learning-based localization algorithms also achieve

high precision global localization. Lu et al. [17] propose

L3Net, which optimize a deep neural network to optimize the

robot’s pose using a 3D LiDAR scan with a pre-built 3D point

cloud map. L3Net achieves centimeter-level accuracy in an

urban environment but needs as prior an estimate of the robot’s

pose. This approach is often referred to as pose tracking. Chen

et al. [3] exploit a convolutional neural network to predict the

overlap between a real LiDAR scan and a virtual scan from

the pre-build map, which is used as an observation model

in an MCL framework. Zimmerman et al. [44] combine 2D

LiDAR-based localization using occupancy grid maps in the

MCL framework and text spotting using an additional camera

to enhance the robustness of the indoor localization.

Our proposed IR-MCL approach exploits an implicit repre-

sentation of the environment to model the scene and define the

observation model for localization. The classic map represen-

tation used in robot localization [4], [5], [7], [31] is the discrete

occupancy grid map, which is limited by the resolution of grid

cells that loses the detailed geometric information of the scene.

To cope with this challenge, continuous Gaussian process

grid maps [25], [41], Hilbert maps [28], and a feature-based

implicit representations [42] have been proposed to represent

the 2D world. Often these functions may not generalize well

for describing the world precisely and therefore can limit the

global localization capabilities.

In recent years, deep learning-based methods for repre-

senting the environment are widely used in the computer

vision. Mildenhall et al. [19] propose a method to learn an

implicit function to represent the scene by modeling a neural

radiance field. It can predict realistic scene-aware views for

arbitrary input poses to support many applications such as vir-

tual/augmented reality or robot navigation using cameras [1].

In contrast to the vanilla NeRF that predicts the volume

density, Xu et al. [36] propose a generative occupancy field

to represent surfaces by predicting the occupancy probability

of the space. Similarly, Oechsle et al. [23] propose a vol-

ume ray-tracing algorithm for the occupancy field to render

surface-aware images. Based on the occupancy fields, several

works exploit the depth information as a strong geometry

constraint from RGB-D sensors [33], [43], or depth estimation

algorithms [6], [16], [29] together with color information to

train NeRF for rendering of novel depth images or even point

clouds. For example, UrbanNeRF by Rematas et al. [29] train

a large-scale NeRF model with high-precision 3D LiDAR to

perform more realistic 3D reconstruction at city-scale. These

works suggest that geometric information supports the learning

of NeRFs to obtain appealing performance. Beyond the NeRF,

iSDF [24] and CNM [38] learn a signed distance function

(SDF) through a neural network as the map representation

to trade-off between accuracy and efficiency. LASER [20]

exploits the latent space for robotic visual localization.

Recently, neural implicit representations have also been

used to support robot mapping and localization. For example,

iNeRF by Lin et al. [39] estimates the camera pose by inverting

the training process of NeRF to optimize the camera pose with

a trained NeRF. There are also works that exploit an implicit

scene representation in localization and mapping for mobile

robots. Moreau et al. [22] propose to use NeRF to synthesize

observations and enhance the mapping and localization results

under limited amount of real data. They later also propose

ImPosing [21], which uses the implicit representation to

achieve real-time loop closing at city-scale. Adamkiewicz et

al. [1] build a vision-only navigation system based on a

pre-trained NeRF to forecast the measurement of the future

robot state for optimizing the trajectory. Concurrent to our

work, Loc-NeRF [18] was released, which exploits the implicit

map representation for visual localization. To the best of our

knowledge, our proposed IR-MCL system is the first work that

uses an implicit neural representation as an observation model

for LiDAR-based global localization in indoor environments.

III. APPROACH

To realize IR-MCL, we study the problem of generating 2D

LiDAR scans at arbitrary sensor positions in a scene through

a neural implicit representation for robot global localization.

To this end, we propose a neural network to predict the

occupancy probability for a given location to represent a

2D environment as detailed in Sec. III-A. Based on such

estimated occupancy probabilities of samples along LiDAR

rays, we render a synthetic LiDAR scan for a given pose of

the robot as presented in Sec. III-B. Compared with the real

measurements from 2D LiDAR during training, we optimize

the weights of the network as described in Sec. III-C. After

that, we use the trained network to build a novel observation

model and integrate it into the MCL framework to achieve

efficient global localization as presented in Sec. III-D. Fig. 2

shows an overview of our method.

A. An Implicit Representation: Neural Occupancy Field

We propose a neural network to predict the occupancy

probability of an input 2D location p ∈ R
2 as the implicit

scene representation, named neural occupancy field or NOF

in short. Our approach uses a function FΘ to implicitly

represent a continuous 2D world. More specifically, This
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Fig. 2: Overview of our approach for rendering a synthesized measurement of LiDAR from our implicit scene representation model: Neural
Occupancy Field (NOF). We uniformly sample multiple positions along each LiDAR beam, our NOF is a neural network that takes 2D
position p = (x, y) as input and outputs an occupancy probability of it, we can synthesize range values with all predictions along LiDAR
beams through volume rendering.

function takes a 2D location p = (x, y)> as input and outputs

the corresponding occupancy probability pocc as:

pocc = FΘ(γ(p)). (1)

We represent FΘ using an MLP inspired by NeRF [19],

where Θ represents the weights of the neural network. In line

with NeRF, we also use positional encoding to project a 2D

location to a high-dimensional space to encourage our model

to encode higher frequency information of the world. We use

γ(p) with the positional encoding:

γ(p) = [p, sin(20p), cos(20p), . . . ,

sin(2L−1p), cos(2L−1p)], (2)

where we use L = 10 in our implementation.

The network is trained such that it can map from arbitrary

input 2D coordinates to the corresponding occupancy prob-

ability. To accomplish this, our MLP consisted of 8 fully-

connected layers, each followed by batch normalization [13]

and a ReLu activation. Additionally, we adopt and include

residual connections [11] to improve the accuracy of the

predictions. We apply an additional fully-connected layer

followed by a sigmoid activation on the output D-dimensional

feature vector generated by the MLP to obtain the occupancy

probabilities pocc ∈ [0, 1].
Our network predicts an occupancy probability

pocc ∈ [0, 1], which can be used for representing the 2D

scene. That is different from existing neural representations,

such as NeRF [19], which represents the scene geometry from

the predicted volume density. Our proposed network requires

no threshold adjustment to get the occupancy state (free or

occupied). Thus, it generalizes well to different scenes.

B. Novel View Rendering with NOF

Based on the proposed NOF representation, we can render a

novel LiDAR scan for an arbitrary 2D pose in the environment

through the ray casting algorithm.

More specific, given a current 2D pose x = (x, y, θ)>

of a robot, we determine the origin o = (x, y)> and the

normalized direction vector d = (d1, d2)
> of each LiDAR

beam. The direction vector of a ray d is calculated from

the robot orientation θ and the parameters of the 2D LiDAR

sensor. We uniformly sample N points pi = o +mid along

the ray, where mi is the distance from the origin o to the

sampled point pi limited by the valid measurement range of

the 2D LiDAR sensor, i.e., mi ∈ [mmin,mmax]. Similar to

prior work [29], we model the termination weights αi at the

endpoint pi along the ray as:

αi = pocc
i

i−1
∏

j=1

(1− pocc
j ), (3)

where we assume that all occupancy probabilities pocc
i are

independent. With this, we can compute a range r ∈ R

according to the termination weights of the samples pi and

their distances mi along the ray by:

r =

N
∑

i=1

αimi. (4)

Repeating this procedure for each LiDAR beam, we can

render a synthetic observation at any query location x based

on our NOF, and use this scan in comparison to the real scan

for the MCL observation model.

C. Training the NOF

Based on the above-introduced rendering algorithm, we can

train the neural network FΘ using recorded 2D LiDAR scans

and the corresponding pose as done when building the map

for traditional MCL. Each scan zt at time t is recorded from

a pose xt = (x, y, θ)>t . According to the parameters of the

LiDAR sensor, each scan is comprised of B beams and each

beam corresponds to a real range value r̂i ∈ R of the ith

beam. We use two loss functions for optimizing the weights Θ
of our MLP network, a geometric loss, and an occupancy

regularization.

1) Geometric Loss: We compute the geometric loss be-

tween the rendered range value ri and the recorded range

value r̂i of the ith beam using the L1 loss:

Lgeo =
1

B

B
∑

i=1

|ri − r̂i|. (5)

We opt for using the L1 instead of the L2 loss to reduce

the influence of the measurement noise of the employed 2D

LiDAR sensor.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2023

Real 

measurement

Synthesized 

measurement

Particle pose:
NOF

LiDAR 

sensor
Real pose:

(unknown)

Fig. 3: The implicit representation-based observation model. We
render a 2D LiDAR scan for each particle, then update the weights
of the particle by comparing the synthesized measurement with the
real measurement from the LiDAR sensor.

2) Occupancy Regularization: The predicted value in NOF

is regarded as the occupancy value at the input location.

Therefore, pocc is expected to be equal to 1 for the occupied

space and 0 for the free space. That means, ideally, the entropy

of the prediction should be 0. Following similar work [36], we

add a negative log-likelihood loss as regularization to reduce

the entropy of predicted occupancy probabilities:

Lreg =
1

N B

N B
∑

i=1

log(FΘ(pi)) + log(1− FΘ(pi)), (6)

where N is the number of sampled points along each beam.

The final loss function is then given by:

L = Lgeo + λLreg, (7)

where λ is a hyperparameter to balance the influence of the

occupancy regularization.

We train our NOF network using the Adam optimizer [15]

with a batch size of 1024 for all datasets in all experiments.

During rendering, we sample 256 points for each LiDAR

beam, e.g. N = 256, and train the network for 32 epochs. The

initial learning rate is 10−4 and decayed by 0.5 at epoch 4 and

epoch 8, and weight decay is 0.001. The balancing coefficient

of occupancy regularization is set to λ = 10−5.

D. Implicit Representation MCL (IR-MCL)

Based on the rendered observations by our NOF network,

we propose a novel observation model for MCL to achieve

global localization. The global localization is formulated as

a posterior probability estimation problem [34], where the

objective is to estimate the belief bel(xt) at the robot’s pose

xt = (x, y, θ)>t at time t. The update of the belief bel(xt)
uses a recursive Bayes filter and is formulated as:

bel(xt) = η p(zt | xt,M) bel(xt), (8)

where bel(xt) is the predicted belief of the robot pose accord-

ing to the motion controls and the last pose xt−1, which is

also called motion model of the robot. The p(zt | xt,M) is

the likelihood of the sensor measurement zt while the robot

state is xt in the map M. It is also regarded as the observation

model for correcting the estimate of motion model. The η is

a normalization factor.

MCL exploits a particle filter to approximate the update of

posterior bel(xt) by a set of random samples drawn from the

posterior. These random samples, so-called particles, denoted

as Xt = {(x1
t , w

1
t ), (x

2
t , w

2
t ), . . . , (x

M
t , wM

t )}, where wi is

the weight of the pose xi, and M is number of particles.

After updating, the particles are re-sampled according to the

particles’ importance weights. Repeating this process, the

particles eventually converge to a small region around the real

pose.

In this work, we exploit our NOF model to implicitly

represent the environment M to generate scans used in our

observation model for MCL to achieve global localization.

More specific, our IR-MCL treats each particle as a hypothe-

sized robot pose at time t, e.g. xi
t = (xi, yi, θi)>t . We render

an observation zi
t at each particle location as described in

Sec. III-B, and compare it with the real measurement ẑt

obtained by the 2D LiDAR sensor, which is shown in Fig. 3.

Following [4], we approximated the likelihood p(ẑt | x
i
t, FΘ)

of the i-th particles through a Gaussian distribution:

p(ẑt | x
i
t, FΘ) ∝ exp

(

−
1

2

D(ẑt, z
i
t)

2

σ2

)

, (9)

where D(ẑt, z
i
t) is the difference between the measurement

ẑt and zi
t. We use the L1 distance to calculate D, i.e.,

D(ẑt, z
i
t) = 1

B
‖ẑt − zi

t‖1. It is robust to the noise of the

measurements and easy to use while also maintaining high

efficiency. By comparing the current real-sensor measurement

with the synthetic observations rendered at all particle loca-

tions, we update the likelihood p(ẑt | xt, FΘ).
To accelerate the runtime of our IR-MCL while using a large

number of particles, e.g., M = 100, 000, we build a predefined

2D grid to store the predicted probabilities for accelerating

the rendering similar to [12], and call it neural occupancy

grids (NOG). The NOG will cover the whole space of the

current scene. During localization, we use the nearest neighbor

cell of each sampling point along the ray in the NOG as the

occupancy probability at this point. By exploiting NOG, our

IR-MCL system achieves real-time performance even with a

large number of particles.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is an implicit representation-

based Monte-Carlo localization system for the global lo-

calization of a robot. We present our experiments to show

the capabilities of our method and support our key claims,

which are: (i) we are able to build an accurate observation

model based on the proposed NOF for 2D LiDAR-based

global localization, (ii) we achieve state-of-the-art localization

performance compared to approaches using occupancy grid

maps, (iii) our approach converges fast to globally localize a

robot and operates online.

A. Experimental Setup

Datasets. We evaluate our method and compare it with

the state-of-the-art methods in multiple datasets including,

three typical publicly available datasets: Freiburg Building

079 (shortly Fr079) dataset, Intel Lab dataset, MIT CSAIL
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Sequence Method Memory
Location < 5cm < 10cm < 20cm Yaw < 0.5

◦
< 1

◦
< 2

◦

RMSE (cm) ↓ Pct. ↑ Pct. ↑ Pct. ↑ RMSE (degree) ↓ Pct. ↑ Pct. ↑ Pct. ↑

Seq 1

AMCL
4 MB

11.57 24.44% 58.89% 92.22% 1.80 21.11% 44.44% 81.11%
NMCL - 17.36% 32.98% 81.71% 7.14 22.16% 39.12% 67.16%

SRRG-Loc 6.36 49.11% 92.10% 99.85% 1.08 47.25% 75.45% 94.00%
HMCL 0.01 MB 13.44 18.46% 32.98% 81.71% 3.33 19.57% 38.55% 67.50%

IR-MCL 1.96 MB 5.13 63.15% 97.27% 100.00% 1.05 47.12% 74.59% 94.24%

Seq 2

AMCL
4 MB

10.65 17.11% 52.63% 98.68% 1.09 28.95% 55.26% 94.74%
NMCL 23.52 19.78% 40.19% 74.96% 4.51 19.78% 40.96% 65.38%

SRRG-Loc 8.83 25.79% 69.09% 100.00% 1.43 27.82% 53.54% 82.28%
HMCL 0.01 MB - 0.00% 0.00% 0.00% - 0.00% 0.00% 0.00%

IR-MCL 1.96 MB 5.53 62.20% 92.85% 100.00% 0.81 48.88% 82.15% 98.16%

Seq 3

AMCL
4 MB

- 30.77% 71.79% 84.62% - 15.38% 23.08% 61.54%
NMCL - 0.00% 0.00% 0.00% - 0.64% 0.96% 1.61%

SRRG-Loc 50.36 20.91% 39.38% 77.98% 2.86 17.80% 22.25% 43.38%
HMCL 0.01 MB - 0.00% 0.00% 0.00% - 0.00% 0.00% 0.00%

IR-MCL 1.96 MB 4.59 80.42% 98.33% 100.00% 0.65 60.18% 85.54% 100.00%

Seq 4

AMCL
4 MB

- 20.55% 54.79% 83.56% 9.57 24.66% 42.47% 68.49%
NMCL - 0.00% 0.00% 0.00% - 0.35% 0.70% 2.29%

SRRG-Loc 11.02 16.17% 51.73% 96.04% 1.15 45.79% 68.40% 89.44%
HMCL 0.01 MB 22.70 0.50% 6.77% 61.1% 4.42 13.28% 27.39% 52.23%

IR-MCL 1.96 MB 11.54 38.78% 67.82% 92.74% 1.56 37.94% 68.73% 84.74%

Seq 5

AMCL
4 MB

- 15.87% 58.73% 92.06% - 20.63% 53.97% 85.71%
NMCL 47.15 7.78% 45.91% 84.83% 3.82 22.95% 39.12% 52.10%

SRRG-Loc - 34.97% 69.85% 94.49% 1.87 38.24% 73.30% 90.78%
HMCL 0.01 MB 23.97 1.46% 9.99% 57.62% 5.76 9.30% 24.46% 49.87%

IR-MCL 1.96 MB 6.33 48.15% 90.27% 100.00% 1.47 37.98% 60.03% 81.22%

TABLE I: Quantitative results on IPBLab dataset. We compare with various MCL-based global localization algorithms. We report the absolute
pose error metrics in location and direction, the ‘-’ means global localization failed in the sequence. We only report the accuracy for success
cases. Alongside, we also report the ratio of frames with location and yaw angle errors less than the given threshold.

Lab (shortly MIT), and a self-recorded dataset, called IPBLab

dataset. The three publicly datasets only contain one sequence

of an indoor scenario, therefore, we split each sequence

into three subsets for training, validation, and testing. The

Fr079 contains 3448 frames for training, 384 and 959 frames

for validation and testing respectively. The Intel Lab dataset

contains 655 frames for training, 73 and 182 frames for

validation and testing respectively. The MIT dataset contains

291 frames for training, 33 and 82 frames for validation and

testing respectively. The IPBLab dataset was collected in our

building at the University of Bonn using a Kuka YouBot

platform equipped with several sensors, including a Hokuyo

UTM-30LX LiDAR sensor and an up-facing camera. The up-

facing camera is used for determining close to ground truth

poses of the robot through localizing densely placed AprilTags

on the ceiling that have been measured with a high-precision

terrestrial laser scanner [44]. Additionally, the ground truth

poses are optimized by aligning the scans with a highly precise

dense point cloud map generated by a Faro terrestrial laser

scanner and human-supervised scan matching. For training

our NOF model, we collect a long sequence including 31, 608
frames as the training set. It consists of several indoor scenes:

office, corridor and kitchen, and covers the whole scene. We

additionally collect five shorter sequences for evaluating global

localization. Each sequence traverses a sub-region of the scene,

and the average length of the testing sequences is 1419 frames.

Baselines. We compare our method with three existing 2D

LiDAR-based global localization algorithms: First, AMCL [8]

as shipped with ROS1, a widely used highly efficient MCL

algorithm; Second, the MCL approach by Zimmerman et

1http://wiki.ros.org/amcl

al. [44], which we call NMCL; Third, the approach by

Sapienza Robust Robotics Group (SRRG), called SRRG-

Localizer [9] shortly SRRG-Loc, which is a sophisticated

MCL implemented by the team led by Giorgio Grisetti. We

additionally re-implemented the HMCL approach using an

observation model [35] with a continuous Bayesian Hilbert

map [30]. Note that NMCL uses no text spotting to support the

localization in our experiments. We kept the default parameters

for all baseline methods and uses the same number of particles

for all approaches for a fair comparison.

B. Global Localization Performance

The first experiment is designed to support the claim that

exploits our devised implicit representation-based observation

model, our IR-MCL achieves state-of-the-art accuracy in the

global localization of a robot.

Our MCL system includes two stages: initialization and

pose tracking. At the initialization stage, we uniformly sample

M = 100, 000 particles in the whole space at the beginning

to achieve global localization without any priors. At the

pose tracking stage, we reduce the number of particles to

M = 5, 000. HMCL uses the same number of particles as

our method. For AMCL, the range of particle numbers is

decreased from 100, 000 to 5, 000. We fixed particles number

to 100, 000 for NMCL and SRRG-Loc, because they do not

provide a mechanism for adjusting the number of particles.

For baseline methods, we build an occupancy grid map or

Bayesian Hilbert map by using the data from the training

set as the scene representation. The size of the grid map is

50m × 50m with 5 cm grid resolution. For all approaches,

we use the same motion model and the odometry reading

as control commands. Thus, the main difference between
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#Particles 10,000 5,000 500 50

AMCL 10.50/1.52 10.45/1.52 10.65/1.74 18.67/3.44
NMCL 13.69/2.37 13.52/2.27 14.06/2.46 16.84/3.30

SRRG-Loc 8.52/1.48 8.48/1.19 8.44/1.54 9.71/2.24

HMCL 21.42/4.90 21.40/4.89 20.90/4.84 20.84/4.82
IR-MCL 6.96/1.14 6.85/1.14 6.87/1.19 12.78/2.39

TABLE II: Ablation study on number of particles in pose track-
ing stage. We report average APE in Location RMSE (cm)/Yaw
RMSE (degree) format.

the different approaches lies in the observation model of the

different MCL implementations.

Regarding the evaluation metrics, we calculate the absolute

pose error (APE) between the estimated robot poses and

ground truth poses in five testing sets of the IPBLab dataset.

We show both the location error and yaw angle error in

terms of the root mean square error (RMSE) of the location

(x, y)> and the direction θ w.r.t. the ground truth. For a fair

comparison, we leave out the first 20 s as the initialization

stage for the MCL and only calculate the localization error

when the method converged, i.e., the initialization stage is

excluded for calculating the APE and RMSE. The localization

is regarded as failed if the method cannot converge in 20 s, i.e.,

the location RMSE or yaw RMSE larger than a threshold. We

use 50 cm for location RMSE and 5◦ for Yaw RMSE as a

threshold in the experiments.

Besides, we also report the ratio of frames with location and

yaw angle errors less than confident thresholds to evaluating

the precision of localization results at different tolerance. The

thresholds are 5 cm, 10 cm and 20 cm for the location error,

respectively, and 0.5◦, 1◦, and 2◦ for the yaw angle error. Tab. I

shows the quantitative results of localization performance.

The experimental results show that our method outperforms

the baseline methods in both location and yaw angle accuracy,

and that it improves the location accuracy. As argued before,

the main difference between the different methods lies in the

observation models, where our method can directly generate a

rendered scan from an implicit representation of the scene and

does not rely on the discrete occupancy grid map. In addition,

the memory consumption of our NOF representation is only

half of the occupancy grid map. The Hilbert map has a lower

memory footprint, but it sacrifices localization accuracy. The

results show that our method has a good trade-off between

performance and memory cost.

Fig. 4 shows the qualitative results on sequence 1 and 5 of

the IPBLab dataset. We plot the trajectory of each method after

the initialization stage, where color indicates the translation

error. We can see that the proposed IR-MCL is much more

accurate for global localization as the colors are always in the

lower range of the spectrum. Furthermore, the figures show

that the SRRG-Loc also performs well after convergence, but

needs more time in the initialization stage.

Tab. II shows an ablation study on different numbers of

particles for pose tracking. The particles are initialized by

adding Gaussian noise to the ground truth pose of the first

frame. The numbers of particles are the same for all methods.

We report the average APE on five sequences of the IPBLab

dataset in “Location RMSE (cm)/Yaw RMSE (◦)” format. The

experimental results show that our method outperforms all

Sequence 1 Sequence 5

Fig. 4: Qualitative global localization results on the sequence 1 and 5
of IPBLab dataset. The dash line depicts ground-truth trajectory, and
orange line is the estimated trajectory of the different approaches
after convergence. RMSE inside the legend is the location RMSE.
Our approach leads to more consistent and more accurate trajectories
while achieving faster convergence.

baselines in most cases. SRRG-Loc slightly outperforms our

method in the extreme case of only 50 particles. Moreover,

our method stays accurate when particles number change from

5, 000 to 500. Therefore, particles number can be selected

according to computing resources in practice. In this paper,

we choose 5, 000 particles to ensure the robustness of our

systems after satisfying online operation.

Additionally, the experimental results show that the NMCL

and SRRG-Loc work well with fewer particle numbers if pro-

vided a good initial guess. However, we still fixed the particle

number to 100, 000 in the global localization experiment. It

ensures the procedure of these algorithms is not changed for

the fairness of the experiment.
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Dataset Method Avg Error (m) ↓ Acc ↑ CD (m) ↓ F ↑

Fr079
Ray-casting 0.33 88.41% 0.17 0.97
NOF (ours) 0.20 92.16% 0.16 0.98

Intel Lab
Ray-casting 0.27 91.62% 0.19 0.97

NOF (ours) 0.18 92.54% 0.19 0.97

MIT
Ray-casting 0.98 80.16% 0.57 0.92
NOF (ours) 0.45 81.33% 0.37 0.93

TABLE III: Quantitative results for the observation model. We
compare the rendered scans with the ground truth measurement
from the 2D LiDAR. We compare our method (NOF) with the ray-
casting methods rendering a scan from an occupancy grid map using
Bresenham’s algorithm (Ray-casting).

C. Evaluation of the Observation Model Computed on the

Implicit Representation

The second experiment is presented to back up the claim

that our proposed observation model for a 2D LiDAR sensor

based on our proposed implicit representation is more accurate

than existing models. In this experiment, we directly compare

rendered scans from our NOF model given poses with the real

LiDAR scans. We take the traditional ray-casting observation

model of the beam-end model [34], as a baseline, which ren-

ders scans using Bresenham’s algorithm using an occupancy

grid map built by GMapping [10].

We evaluate the performance in Freiburg building 079

dataset, Intel Lab dataset, and MIT CSAIL Lab, which shows

that our method is robust in different scenarios. Because these

datasets only contain one sequence, these datasets are not

suitable for evaluating global localization. Here, we split the

sequence into subsets for training and evaluation of observa-

tion models.

Tab. III shows the quantitative evaluation of the observation

models. We use similar error metrics introduced by Rematas et

al. [29]. We compare synthesized scans z with the ground

truth scans ẑ and report the average absolute error of the

measurements. This metric is the same as the distance function

D used in our observation model, see Eq. (9). Therefore, it

directly reflects the errors brought to the localization system.

We also report the accuracy (Acc) as the ratio of the LiDAR

beams with a range error smaller than 0.5m compared to

the real scan measurements. Given a LiDAR pose, we can

determine the LiDAR beams’ origin o and direction d. The

corresponding 2D point cloud of a scan z is pi = o + zid.

We do the same operation for the real scans ẑ to get the

ground-truth. We compute the Chamfer Distance (CD) and

F - score (F) using a threshold of 0.5m between the rendered

and the ground-truth point clouds.

As shown in Tab. III, our model generally achieves better

performance in all metrics in all datasets. Our NOF model

reduces the average absolute error than the ray-casting method.

The reason is that our method synthesizes more accurate

scans compared with the ray-casting method even if there are

only training scans with noisy poses available from a SLAM

algorithm. Note that our method significantly improves the

accuracy on the MIT dataset by a factor of 2 considering

average absolute error. In this case, it seems that the 291
frames are not sufficient to build an occupancy grid map to

precisely represent the scene. But our implicit representation
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Fig. 5: The location error for each frame of sequence 5 of the IPBLab
dataset. Our method converges faster than baseline methods, and the
localization errors are most of the time lower than the baselines after
convergence.

can make reasonable predictions for some places, which are

unseen in the training set. It also supports that our methods

have good generalization capabilities for small datasets. Be-

sides, our method only gets minor improvement in F-score,

since it is the harmonic mean of accuracy and completeness.

The results show that our method can reconstruct the complete

scene as the occupancy grid map, but is more accurate than it.

D. Runtime

The final experiment supports our claim that our IR-MCL

achieves fast convergence for global localization and can

operate online. We compare our method with all baseline

methods on sequence 5 of the IPBLab dataset and we report

the location RMSE of every frame of the sequence. As shown

in Fig. 5, our method converges faster than other baseline

methods and achieves higher accuracy after convergence.

We test the runtime of our IR-MCL in initialization stage

(100, 000 particles) and pose tracking stage (5, 000 particles).

On a PC with 10 CPU Cores at 3.7 GHz and 64 GB memory,

and an NVIDIA Quadro RTX 5000 GPU, we achieve an aver-

age frame rate of 1.2Hz during initialization stage, and 27Hz

after convergence, which supports our claim that computations

can be executed fast and in an online fashion.

In summary, our evaluation suggests that we can build an

accurate observation model, which provides competitive global

localization performance for a mobile robot. At the same time,

our method is fast enough for online processing.

V. CONCLUSION

In this paper, we presented a novel implicit representation-

based online localization approach using a 2D LiDAR. Our

method exploits a neural network-based scene representation

to build an accurate observation model. This allows us to

successfully localize a mobile platform in a given environ-

ment, and outperform existing gold standard MCL in terms

of localization accuracy. We implemented and evaluated our

approach on different datasets and provided comparisons to

other existing techniques supporting all claims made in this

paper. The experiments suggest that our approach achieves

reliable and accurate global localization while operating online

at the sensor frame rate after convergence. An avenue for



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2023

future work is to relax the requirement for accurate poses to

learn the implicit representation and perform pose estimation

at the same time.
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