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Abstract— Developing robot controllers capable of achieving
dexterous nonprehensile manipulation, such as pushing an
object on a table, is challenging. The underactuated and
hybrid-dynamics nature of the problem, further complicated
by the uncertainty resulting from the frictional interactions,
requires sophisticated control behaviors. Reinforcement Learn-
ing (RL) is a powerful framework for developing such robot
controllers. However, previous RL literature addressing the
nonprehensile pushing task achieves low accuracy, non-smooth
trajectories, and only simple motions, i.e. without rotation of
the manipulated object. We conjecture that previously used
unimodal exploration strategies fail to capture the inherent
hybrid-dynamics of the task, arising from the different possible
contact interaction modes between the robot and the object,
such as sticking, sliding, and separation. In this work, we
propose a multimodal exploration approach through categorical
distributions, which enables us to train planar pushing RL
policies for arbitrary starting and target object poses, i.e.
positions and orientations, and with improved accuracy. We
show that the learned policies are robust to external distur-
bances and observation noise, and scale to tasks with multiple
pushers. Furthermore, we validate the transferability of the
learned policies, trained entirely in simulation, to a physical
robot hardware using the KUKA iiwa robot arm. See our
supplemental video: https://youtu.be/vTdva1mgrk4.

I. INTRODUCTION

Nonprehensile manipulation, defined as manipulation

without grasping, endows robots with versatile behaviors,

enabling them to perform a wide range of motions on objects

with different properties [1], [2]. However, allowing the pose

of the object relative to the end-effector to change requires

the robot to constantly adapt the contact positions, leading

to different possible contact modes in the form of sticking,

sliding, and separation. As a result, multiple interesting

challenges arise. Most notably, the underactuated nature of

the system makes it infeasible to realize arbitrary motions

of the object [3], in addition to the complexity of hybrid-

dynamics resulting from the transitions between different

contact modes [3], and the hard to model frictional inter-

actions exacerbating the uncertainty in the contact modes

and the object motion [4], [5].

In this paper we consider the task of planar pushing,

widely studied in the nonprehensile literature [1], [3], [5]–

[7]. The task, as seen in Fig. 1, consists of using a robotic

pusher to control the motion of an object sliding on a

flat surface. Previous works developed robot controllers for
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Fig. 1. Experimental robotic hardware set-up for the planar pushing task.
The robot uses a pusher to move an object to a specified target pose.

planar pushing, generally following one of two approaches:

model-based via Model Predictive Control (MPC) [3], [7],

or model-free via Reinforcement Learning (RL) [8]–[11].

These approaches typically face different open problems;

MPC lacks scalability to more complex scenarios, such as

multiple contacts and switching contact faces [3], [12], while

RL methods tend to produce non-smooth robot motions and,

in the case of planar pushing, show limited range of sub-

optimal, idiosyncratic motions, which will be the focus of

this paper.

A. Related Work

Mason’s [1] seminal work introduced planar pushing as a

simple task to study broader concepts in modeling, planning,

and control. This work developed analytical models of the

dynamics of planar pushing by exploring the concepts of

the voting theorem and the motion cone. Later on, Goyal

et al. [6] added the concept of the limit surface to model

the friction between the object and the table. More recently,

Zhou et al. [13] and Bauza and Rodriguez [5] explored

data-driven approaches for modeling the dynamics of planar

pushing through convex polynomials and Gaussian processes

respectively.

Hogan and Rodriguez [3] proposed a mixed integer MPC

formulation for offline tracking of nominal trajectories, en-

abling the use of sticking and sliding contact modes for

pushing, and learned an approximation of the contact mode

selection for an online deployment of the MPC. Moura et al.

[7] introduced a complementarity constraint MPC formula-
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tion for online tracking of nominal trajectories, i.e. without

pre-learning the contact mode selection. This formulation

also enables offline trajectory optimization with sticking and

sliding contact modes. Both of these approaches achieve the

target poses with significant accuracy while recovering from

disturbances, however, require offline generation of nominal

trajectories and rely on the quasi-static assumption, which

limits the pushing velocities below 0.08m s−1 [5].

RL methods can overcome some of the online scalability

limitations of MPC through extensive offline exploration

during training. Peng et al. [8] used dynamics randomization

to transfer configuration-space planar pushing RL policies

from simulation to the physical robotic set-up. Lowrey et al.

[9] also explored RL for planar pushing using a different

robotic set-up, consisting of 3 pushers, each with 3 degrees

of freedom (DOF). More recently, Cong et al. [10] used RL

with vision-proprioception to learn task-space planar pushing

motions for objects with different shapes. These RL methods

learn a policy suitable for online execution and can recover

from significant disturbances. However, they result in non-

smooth trajectories with overall poor accuracy, i.e. position

errors greater than 2 cm, and crucially, they disregard the

orientation of the object.

B. Problem Statement

While model-free RL methods address the scalability

limitations of model-based approaches, for example with

respect to the number of contacts and ability to switch

contact faces, the current literature on the application of

RL methods to planar pushing achieve low accuracy, non-

smooth trajectories, and only simple motions, i.e. without

orientation of the sliding object [8]–[11], which we aim to

consider. The aforementioned RL methods share a common

trait: they formulate the task with a continuous action space

and use a multivariate Gaussian with diagonal covariance for

exploration. This limits the exploration to unimodal policies

across each action space dimension. However, the model-

based literature identifies the planar pushing problem as a

hybrid-dynamic system due to the different possible contact

modes (sticking, sliding left, sliding right, and separation).

This provides us with the insight that perhaps planar pushing

is fundamentally a multimodal control problem. Therefore,

we ask the question: can multimodal exploration enable us

to learn robust, scalable, and accurate planar pushing RL

policies that incorporate object orientation?

C. Contributions

In this paper we make the following contributions:

• We propose a multimodal exploration approach, with

categorical distributions on a discrete action space,

which enables us to learn planar pushing RL policies

for arbitrary initial and target object poses, i.e. different

positions and orientations.

• We demonstrate that the proposed framework is robust

to disturbances and observation noise, scalable to two

pushers, and exhibits smooth pushing motions.

• We validate the policies, trained only in simulation, on

a physical hardware set-up using the KUKA iiwa robot.

II. BACKGROUND

A. Planar Pushing

We consider the task of pushing a box to a specified

target pose, composed of the object position and orientation,

from a random initial system configuration, composed of

the initial object pose and robot pusher position, all within

a bounded planar workspace. Fig. 2 illustrates the planar

pushing system, where (vx,p, vy,p) is the velocity of the

pusher, located at (xp, yp), (xb, yb, θb) is the pose of the

box, and (xtarg, ytarg, θtarg) is the target pose.

θb

(xb, yb) θtarg

(xtarg, ytarg)

(xp, yp)

(vx,p, vy,p)

x

y

Fig. 2. Illustration of the planar pushing system.

B. Problem Formulation

We formulate the problem using goal-conditioned RL.

In particular, we consider a finite horizon goal-conditioned

Partially Observable Markov Decision Process (POMDP)

defined by the tuple (S,Ω,G,A,O,P,R, H, ρ0, ρg) [10],

[14]. At each time step t, the environment has state st ∈ S ,

we receive an observation ot ∈ Ω, our goal is gt ∈ G, and

we take an action at ∈ A. Note that the goal remains fixed

during an episode. Additionally, O : S × A → Pr(Ω) is

the observation model, P : S ×A → Pr(S) is the transition

dynamics, and R : S×A×G → R is the reward function. We

limit episodes to have a maximum horizon H . Finally, the

initial state and goal of an episode are distributed according

to ρ0 and ρg respectively.

C. Proximal Policy Optimization

We wish to learn a stochastic policy πθ : Ω×G → Pr(A)
parametrized by θ. To this end, we use Proximal Policy

Optimization (PPO) [15], which is a popular on-policy RL

algorithm widely applied in various control tasks, including

in-hand manipulation [16] and locomotion [17]. PPO uses a

truncated Generalized Advantage Estimation (GAE) [18] to

estimate the advantage function for time step t ∈ [0, T ] as

Ât =

T−t
∑

i=0

(γλ)iδt+i, (1)

where

δt = rt + γVφ(ot+1, gt+1)− Vφ(ot, gt), (2)

rt is the reward, Vφ : Ω × G → R is the value function,

parametrized by ϕ, λ is the GAE parameter, and γ is the

discount factor. Then, πθ and Vφ can be learned together



through mini-batch stochastic gradient ascent on the objec-

tive function

Lt(θ, ϕ) = Êt

[

min

(

πθ(at | ot, gt)

πθold(at | ot, gt)
· Ât,

clip

(

πθ(at | ot, gt)

πθold(at | ot, gt)
, 1− ϵ, 1 + ϵ

)

Ât

)

− c1L
Vφ

t + c2S
πθ

t

]

, (3)

where we compute the expectation over a mini-batch of

samples. The first term within the expectation is the surrogate

objective of the policy, L
Vφ

t is the loss of the value function,

Sπθ

t is an entropy bonus, c1, c2 are weights, and ϵ controls

the clip range [15].

III. METHOD

A. Observation, Goal, Action, and Reward

Observation. At each time step t, the policy receives an

observation ot consisting of the current box pose (xb, yb, θb),
and the current pusher position (xp, yp). However, there

is important information from the environment state st
that this observation fails to capture, for instance, the

frictional contact forces and the velocity of the box. We

consider two techniques that attempt to enable the policy

and value functions to capture this hidden information. The

first technique involves using a stack of previous observations

{ot, ot−1, ... , ot−l} [8], [19]. This allows us to use a simple

architecture for the policy and value functions, such as a

Multilayer Perceptron (MLP), which can extract an estimate

of the hidden dynamics of the environment from the stack of

observations. The second technique involves using an LSTM

layer within the policy and value functions [8], [16]. This

avoids the need for observation stacking by leveraging the

hidden and cell states within the LSTM layer which have

predictive capabilities of the environment dynamics.

Goal and Action. The goal gt of the policy is to reach

a particular target box pose (xtarg, ytarg, θtarg). Given a goal

gt and an observation ot, the policy takes an action at =
(vx,p, vy,p), which consists of the x and y velocity of the

pusher. We limit the velocity on each axis to the range

[−0.1, 0.1] m s−1.

Reward. If the object reaches the target, the episode

terminates with a positive reward rt = α. Alternatively,

if the object fails to reach the target within the maximum

horizon, or the workspace boundaries are violated by the

pusher or box, the episode terminates with a negative reward

rt = −β. Otherwise, the policy receives a reward rt =
k1(1 − dx,y) + k2(1 − dθ) + k3(1 − vp), where dx,y is

the normalized distance to the target position, dθ is the

normalized angular distance to the target orientation, vp is the

normalized magnitude of the pusher velocity, and k1, k2, k3
control the weights of the three terms. The first two terms,

corresponding to k1 and k2, provide signals reflecting the

desirability of the current box pose relative to the target

pose. The last term, corresponding to k3, acts as a regularizer

designed to encourage efficient motions of the pusher.

B. Exploration Strategies

As discussed in the Problem Statement, previous works on

RL for planar pushing perform exploration using a multivari-

ate Gaussian with diagonal covariance. There are different

possible formulations of this strategy, usually depending on

the RL algorithm used. When applying PPO with Gaussian

exploration to our planar pushing set-up, the policy function

outputs the mean velocities in x and y, denoted as µx and

µy . Combining them with the corresponding learned state-

independent variances σ2
x and σ2

y results in a multivariate

Gaussian from which we can sample the action [15].

Soft Actor Critic (SAC) [20] is a popular off-policy RL

algorithm. We include SAC with Gaussian exploration and

an MLP architecture as a baseline in our experiments since

the current state-of-the-art RL policies for planar pushing use

the same configuration [10]. When using SAC with Gaussian

exploration, the policy function directly outputs µx, µy , σ2
x,

and σ2
y , which allows for the variances to be state-dependent

[20].

A straightforward method to enable multimodal explo-

ration strategies during policy training is to discretize the

action space and use categorical distributions for exploration,

which can approximate any type of distribution. In particular,

we discretize vx,p and vy,p using 11 bins for each velocity

[16], [21]. Then, given an observation and goal pair, the

policy network outputs 11 logits that define a categorical

distribution over vx,p and another 11 logits that define a

categorical distribution over vy,p. We sample the action from

these distributions.

C. Sim-to-Real Transfer

We train the policies entirely in simulation and use

dynamics randomization, observation noise, and synthetic

disturbances to bridge the sim-to-real gap. At the start

of every episode, we sample random values for: (a) the

friction and restitution of the floor, box, and pusher; (b) the

dimensions of the box and the pusher; and (c) the mass of

the box. Additionally, at every time step we randomize the

time duration of the action [8]. We also add correlated noise,

sampled at the beginning of each episode, and uncorrelated

noise, sampled at every time step, to the observations of the

box pose and pusher position, to simulate sensor uncertainty.

Finally, we apply random disturbances to the box during each

training episode.

D. Curriculum Learning

The goal of the policy is to move the box to the target pose.

Therefore, we define thresholds Tx,y and Tθ, corresponding

to the position and the orientation respectively, such that, if

∥(xb, yb)−(xtarg, ytarg)∥ ≤ Tx,y and |θb−θtarg| ≤ Tθ, then the

episode terminates as a success. Smaller Tx,y and Tθ lead

to more accurate learned policies; however, this is at the

expense of increased task complexity and a sparser reward

signal, which can lead to much slower learning, or lack

of convergence entirely. To mitigate this issue, we define a

curriculum such that the learning starts with larger thresholds



TABLE I. Hyperparameters for PPO

Hyperparameter Value

Clip range (ϵ) 0.2

GAE parameter (λ) 0.95

Discount factor (γ) 0.99

Value function coefficient (c1) 0.5

Entropy bonus coefficient (c2) 0

Epochs 10

Optimizer Adam [24]

Learning rate 3 · 10−4

Batch size 7680

Tx,y, Tθ, and they are reduced to Tx,y/2 and Tθ/2 if the

policy reaches a 90% average success rate.

IV. EXPERIMENTAL SET-UP

Training. We train the policies with data collected from

128 parallel actors in simulated planar pushing systems.

The simulations are performed using PyBullet [22] and, by

default, the policies run at a frequency of 30 Hz. Addition-

ally, the maximum episode length is H = 300 time steps,

corresponding to 10 seconds in real-time. For the reward

function, we use parameter values α = 50, β = 20, k1 = 0.1,

k2 = 0.02, and k3 = 0.004. Our implementations of PPO

and SAC are based on Stable Baselines3 [23]. We design a

custom planar pushing environment for learning. All policies

are trained in a single workstation with an Intel Core i9

3.60GHz, GeForce RTX 2080, and 64 GiB of RAM.

Network Architecture. We experiment with two differ-

ent neural network architectures for the policy and value

functions in PPO. The first architecture consists of an MLP

which receives as an input the goal gt and a stack of the

10 previous observations {ot, ot−1, ... , ot−9}. The policy

function contains 2 hidden linear layers, each of size 512,

while the value function contains 2 hidden linear layers, each

of size 1024. The second architecture involves an LSTM

layer, which allows us to include only the goal gt and the

current observation ot in the input. In this case, the policy

and value functions have the same shape and contain the

following hidden layers: a linear layer of size 128, an LSTM

layer of size 256, and a linear layer of size 128, in this order.

We use tanh nonlinearities in both architectures.

PPO Hyperparameters. During training, excessively

large model updates can lead to policy collapse. One way

to mitigate this in PPO is through early stopping of model

updates when the KL divergence of the new policy and the

old policy exceeds a certain threshold [23]. We use such

early stopping with a threshold of 0.01 when training our

policies. The remaining hyperparameters used in PPO are

summarized in Table I.

SAC Hyperparameters. For our experiments with SAC,

we use the same MLP architecture as in PPO with minor

modifications since SAC learns two state-action value func-

tions instead of a single state value function, and applies

ReLu instead of tanh nonlinearities [20]. Additionally, we

use the same optimizer, batch size, and learning rate as

in PPO. SAC is an off-policy algorithm and hence stores

previous trajectories in a replay buffer. We use a buffer of

TABLE II. Dynamics Randomization and Observation Noise Parameters

Parameter Sampling Distribution

Friction U([0.5, 0.7])

Restitution U([0.4, 0.6])

Box Length U([0.115, 0.125]) m

Box Width U([0.095, 0.105]) m

Box Mass U([0.4, 0.6]) kg

Pusher Radius U([0.012, 0.013]) m

Action Duration N (1/30, (1/320)2) s

Position Noise N (0, 0.0012) m

Orientation Noise N (0, 0.022) rad

size 106. Finally, we apply a tanh squashing function to the

action sampled from the policy [10], [20], [23].

Starting State and Goal. At the beginning of every

episode, we generate a random starting configuration and

a random target box pose. The starting and target box

positions are independently and uniformly sampled from the

available workspace. Additionally, the starting and target box

orientations are independently sampled from U([−π, π]) rad.

The starting pusher position is sampled uniformly from a

perimeter around the box. This is done to facilitate initial

exploration and, as can be seen in the supplemental video, it

does not prevent the policy from learning how to reach the

box from large separations, presumably due to the synthetic

disturbances during training.

Episode Success. During the first stage of the training

process, we use success thresholds Tx,y = 1.5 cm and

Tθ = 0.34 rad ≈ 19.5°. Then, if the policy exceeds a 90%

success rate, averaged over the last 100 episodes completed

by each of the 128 parallel actors, we halve the success

thresholds to Tx,y = 0.75 cm and Tθ = 0.17 rad ≈ 9.7°.

An episode is successful if the box reaches the target pose

within the current success thresholds and the box has velocity

0m s−1. On the other hand, an episode is unsuccessful if the

maximum episode length is reached without achieving the

goal, as well as if the pusher or the box leave the workspace.

Randomization Parameters. Table II details the param-

eters and corresponding sampling distributions for the dy-

namics randomization and observation noise. We sample the

dynamics parameters from their respective distributions at the

beginning of each episode. Additionally, we independently

sample correlated and uncorrelated observation noise for the

position of the box (xb, yb) and the position of the pusher

(xp, yp) from the Position Noise distribution in Table II.

For example, let O(xb) denote the policy observation of

xb. Then, during training, O(xb) = xb + δepisode
xb + δstep

xb ,

where δepisode
xb is sampled at the beginning of the episode,

and δstep
xb is sampled at every time step. Similarly, we add

correlated and uncorrelated noise to the observation of the

box orientation θb by sampling from the Orientation Noise

distribution in Table II. Finally, at every time step we apply

a disturbance to the box with probability 1%, in a uniformly

random position, and with force in x and y independently

sampled from U([−25, 25]) N.

Two-pusher Set-up. We also conduct experiments using

two pushers to evaluate the scalability of our framework. This



Fig. 3. Training performance of the evaluated frameworks. Success rate is
averaged over the last 100 episodes completed by each of the parallel actors.
The curriculum halves the success thresholds at 90% average success rate.

requires certain adjustments to the training procedure. We

augment the action space to include the x and y velocity of

the two pushers. Additionally, in order to guarantee that the

policy only explores motions that are feasible for a bi-manual

manipulation platform, we add two constraints: (a) each

pusher can exert pushing forces with a maximum magnitude

of 75N; and (b) the distance between pushers in the x
coordinate must be at least 5 cm. If the policy violates any

of these constraints, the episode terminates unsuccessfully.

V. EXPERIMENTS AND RESULTS – SIMULATION

We first consider the standard set-up with one pusher. We

train PPO policies with the MLP and LSTM architectures,

and compare the categorical and Gaussian exploration strate-

gies for each configuration. We also train a SAC policy with

the MLP architecture and Gaussian exploration. The resulting

Fig. 4. Evolution during training of the categorical action distribution for
the pusher velocity in the y axis (vy,p) for the configuration shown above.

(a) Simple pushing task

(b) Pushing task with a face switch

Fig. 5. Trajectories generated by the PPO (LSTM + Categorical) policy in
simulation. The pusher numbers indicate chronological order and the plot
boundaries correspond to the workspace boundaries.

learning curves are shown in Fig 3. We find that only

the policies that use the proposed categorical exploration

approach manage to learn the task. Additionally, the LSTM

architecture provides substantially faster convergence.

The best policy is PPO (LSTM + Categorical). It converges

rapidly and reaches a 90% average success rate early on,

which triggers the curriculum step where Tx,y and Tθ are

halved. Hence, the policy manages to learn significantly

accurate planar pushing motions. In particular, during train-

ing, the policy achieves over 98% average success rate with

success thresholds Tx,y = 0.75 cm and Tθ = 0.17 rad ≈
9.7°.

We further investigate whether exploration through cate-

gorical distributions indeed leads to multimodal strategies.

We examine the evolution during training of the categorical

distribution in PPO (LSTM + Categorical) for the action vy,p
in various environment states. As expected, we often find

that the action distribution is multimodal. Fig. 4 shows the

results for one of these cases. In particular, it broadly has two

modes that correspond to upward and downward motions.

Therefore, it seems that the categorical exploration strategy

enables the policy to explore different possible contact modes

concurrently during training.

We also visualize the trajectories generated by the PPO

(LSTM + Categorical) policy in simulation. Fig. 5a shows

a standard pushing task and we see that the box follows

a smooth and efficient trajectory, reaching the target pose

with significant accuracy. The pusher remains in contact with



TABLE III. Success rate and time to target with correlated (per episode)
and uncorrelated (per step) observation noise. Noise values correspond to
the standard deviations of the sampling distributions. Results for the training
set-up are underlined.

Uncorrelated Noise (SD)

0 cm

0 rad

0.1 cm

0.02 rad

0.3 cm

0.06 rad

0.45 cm

0.09 rad
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D
) 0 cm

0 rad

99.1%

4.9 s

99.7%

4.7 s

99.4%

5.1 s

99.0%

5.4 s

0.1 cm

0.02 rad

99.0%

4.8 s

99.2%

5.0 s

99.0%

5.1 s

99.2%

5.4 s

0.3 cm

0.06 rad

95.7%

6.2 s

97.0%

6.0 s

97.2%

6.4 s

96.4%

6.8 s

0.45 cm

0.09 rad

84.5%

9.1 s

87.5%

8.8 s

91.3%

8.3 s

90.6%

9.0 s

the box throughout the entire trajectory. Fig. 5b shows a

more difficult pushing task where the policy performs a face

switch. The policy first re-orients the box, breaks contact at

point 2, makes contact again at point 3, and finally pushes

the box to the target. Note that the boundary in the plot

corresponds to the workspace boundary, so here a face switch

seems necessary in order to solve the task.

A. Robustness to Observation Noise

In this experiment, we evaluate the robustness of the PPO

(LSTM + Categorical) policy to different levels of correlated

(per episode) and uncorrelated (per step) observation noise.

The problem with correlated noise is that it causes the

observations of the environment to be consistently shifted,

relative to the true state, throughout an episode. On the

other hand, moderate levels of uncorrelated noise pose fewer

challenges since the noise update happens at every time

step and it has an expected value of zero. The results are

recorded in Table III. We report success rate and time to

target, averaged over 1000 episodes with random starting

configurations and target poses. We increase the time limit

from 10 to 30 seconds to allow the policy to make corrections

if necessary.

We find that the policy is robust to both correlated and

uncorrelated observation noise, achieving a good perfor-

mance even in settings with large noise levels, which have

standard deviations of comparable magnitudes to the success

thresholds (Tx,y = 0.75 cm and Tθ = 0.17 rad ≈ 9.7°). As

expected, correlated noise has a more significant effect on

both the success rate and time to target. Additionally, the

policy seems to perform better with some uncorrelated noise

rather than none. This could be due to the uncorrelated noise

causing the policy to receive more diverse observations of

the environment, some of which could trigger certain policy

behaviors that are beneficial for solving the task.

B. Limits of Gaussian Exploration

In order to better understand why the policies with Gaus-

sian exploration failed to learn the planar pushing task,

we examine their performance in a simplified setting. We

limit the starting position of the box to the left side of

the workspace, and the target position to the right side

Fig. 6. Training performance of the policies with Gaussian exploration on
a simplified planar pushing task. A curriculum progressively increases the
range of starting and target orientations at 90% average success rate.

of the workspace. Additionally, we restrict the sampling

distribution for the starting and target orientations of the box

to U([−π/4, π/4]) rad, and remove the synthetic external

disturbances. The starting position of the pusher is always in

the backside of the box, from where it can naturally push it

towards the target in the right side of the workspace. For this

experiment, we use success thresholds Tx,y = 1.5 cm and

Tθ = 0.34 rad ≈ 19.5° throughout. Furthermore, we define

a curriculum for training such that, if the policy reaches a

90% average success rate, the width of the uniform sampling

distribution for the starting and target orientations increases

by π/2, still remaining centered around 0. The resulting

learning curves are shown in Fig. 6.

We can see that the training performance of the PPO poli-

cies, besides remaining below 80% success rate, collapses

early on. The SAC policy reaches 90% success rate once,

which triggers the first step in the curriculum, corresponding

to a range of starting and target orientations of [−π/2, π/2]
rad; however, it fails to reach the next curriculum step. In

simplified settings, with small starting and target orientations,

the pusher might be able to achieve the task without breaking

contact, unlike for larger orientations which will require

sharper turns and hence face switching. Therefore, the reason

why these policies fail to progress with the curriculum could

be that they struggle with the tasks that require face switch-

ing since their exploration strategy is unable to effectively

capture this additional modality.

C. Scalability with Two Pushers

To evaluate the scalability of our framework, we train the

PPO (LSTM + Categorical) policy on a planar pushing task

with two pushers. For this experiment, we use our original

curriculum, as described in Section III-D, with the same

success thresholds as in the one-pusher set-up. The results

are shown in Fig. 8. The policy scales well to this more

complex task, and manages to achieve a success rate greater

than 97% with the reduced success thresholds. Nevertheless,

convergence is slower, which is expected due to the increased

dimensionality of the problem.



(a) (b) (c) (d) (e) (f)

Fig. 7. Key frames of the KUKA iiwa robot pushing the box to a target pose. (a) Shows the starting configuration, a large disturbance is applied in (b),
and (c)-(f) exhibit the RL policy recovering from the disturbance and reaching the goal.

VI. EXPERIMENTS AND RESULTS – HARDWARE

We investigate the performance of the PPO (LSTM +

Categorical) policy on a physical planar pushing hardware

set-up with the KUKA iiwa robot. We use the Vicon motion

capture system to track the current and target box pose, and

use OpTaS [25] to map the policy actions in the end-effector

task-space to the robot joint configurations. We use the ROS-

Pybullet interface [26] to develop and test the robot software

implementation.

Fig. 7 shows a sequence of key frames of the

robot pushing the box to a target pose and recover-

ing from an external disturbance. The supplemental video

(https://youtu.be/vTdva1mgrk4) clearly demonstrates the be-

havior of the trained policy. We find that the policy translates

well to the real world and is able to effectively cope with the

dynamics of the new environment. Additionally, the policy

is robust to large external disturbances and changes in the

target pose. Fig. 9 shows a sample trajectory generated by the

robot. The policy manages to remain within the workspace

boundaries and generates a smooth trajectory towards the

target box pose.

We also obtain statistics for the average success rate and

time to target of the policy on the robot. We use success

thresholds Tx,y = 0.75 cm and Tθ = 0.17 rad ≈ 9.7°,

and enforce a time limit of 30 seconds. To collect the

data, we generate 5 random target box poses and, for each

target pose, we run the policy from 15 random starting

Fig. 8. Training performance of the PPO (LSTM + Categorical) policy on
a planar pushing environment with two pushers.

configurations. The resulting average success rate is 97.3%

and the average time to target is 6.5 seconds. The policy

exhibits similar performance to simulation, which indicates

good transferability to the physical hardware.

VII. SUMMARY AND DISCUSSION

In this paper, we have proposed a multimodal exploration

approach, through categorical distributions on a discrete

action space, to enable the learning of planar pushing RL

policies for arbitrary initial and target object poses, i.e. dif-

ferent positions and orientations, with improved accuracy.

Our experiments demonstrate that the learned policies are

robust to observation noise and external disturbances, pro-

duce smooth trajectories, and scale well to two pushers.

Furthermore, we have validated that the policy, trained only

in simulation, achieves both smooth motions and small target

error when executed on the physical robotic hardware.

One of the key realizations in this work was that, when

attempting to learn planar pushing RL policies for the case

of arbitrary object orientations, the use of a multivariate

Gaussian with diagonal covariance for exploration as per

previous literature [8]–[11], would lead to the RL failing

to converge. Borrowing the insight from the model-based

literature [3], [7], that planar pushing has hybrid-dynamics

reflected in a set of different contact modes that constraint the

control actions, we hypothesized that we can reason about

planar pushing as a multimodal control problem. Therefore,

we proposed describing the action space through categorical

distributions to capture the multimodal nature of the problem,

potentially leading to more effective exploration of different

Fig. 9. Trajectory generated by the PPO (LSTM + Categorical) policy in
the physical robot.

https://youtu.be/vTdva1mgrk4


contact modes during training. We have also shown that

indeed, during training, the categorical action distributions

exhibit multimodal exploration strategies.

For future work, we will continue studying multimodal

exploration strategies, aiming to retain the continuity of the

action space. Furthermore, we will explore implicit repre-

sentations of the learned policy, such as in [27], as another

way to capture the multimodal and discontinuous nature of

the pushing task. We also intend to extend this framework

to more complex manipulation tasks with previously unseen

object geometry and incorporating onboard perception.
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