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A B S T R A C T

Robust and accurate localization is a basic requirement for mobile autonomous systems. Pole-like

objects, such as traffic signs, poles, and lamps are frequently used landmarks for localization in urban

environments due to their local distinctiveness and long-term stability. In this paper, we present a

novel, accurate, and fast pole extraction approach based on geometric features that runs online and

has little computational demands. Our method performs all computations directly on range images

generated from 3D LiDAR scans, which avoids processing 3D point clouds explicitly and enables fast

pole extraction for each scan. We further use the extracted poles as pseudo labels to train a deep neural

network for online range image-based pole segmentation. We test both our geometric and learning-

based pole extraction methods for localization on different datasets with different LiDAR scanners,

routes, and seasonal changes. The experimental results show that our methods outperform other state-

of-the-art approaches. Moreover, boosted with pseudo pole labels extracted from multiple datasets,

our learning-based method can run across different datasets and achieve even better localization

results compared to our geometry-based method. We released our pole datasets to the public for

evaluating the performance of pole extractors, as well as the implementation of our approach.

1. Introduction

Robust and precise localization is a crucial capability for

an autonomous robot and a commonly performed state esti-

mation task [1]. The accurate estimation of the robot’s pose

helps to avoid collisions, navigate in a goal-directed manner,

follow the traffic lanes, and perform other tasks. Reliability

here means that the robot should adapt to changes in the

environment, such as different weather conditions [5], day

and night [39], or seasonal changes [25].

Global navigation satellite system-based localization

systems are robust to appearance changes of the environ-

ments. However, in urban areas, they may suffer from

low availability due to building and tree occlusions. Addi-

tional, map-based approaches are needed for precise and

reliable localization for mobile robots. Multiple different

types of sensors have been used to build the map of the

environments, including Light Detection and Ranging (Li-

DAR) scanners [18, 3, 41], monocular [28] and stereo cam-

eras [15]. Among them, LiDAR sensors are more robust to

the illumination changes, and multiple LiDAR-based effec-

tive and efficient mapping approaches have been proposed,

for example, by Behley and Stachniss [3] or by Droeschel

and Behnke [18]. However, these approaches often need

substantial amounts of memory due to map representations,

thus cannot generalize easily to large-scale scenes. If only
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(a) Current scan

(b) Current range image

(c) Pole extraction result by our approach

Figure 1: Visualization of range image and pole extraction.

On the top is the raw LiDAR scan. The corresponding range

image generated from this scan is in the middle. The bottom

is the pole extraction result based on the range image.

specific features are used to build the map, such as traffic

signs, trunks and other pole-like structures, the map size can

be reduced significantly [45].

The main contribution of this paper is a novel range

image-based pole extractor that can be used for long-term

localization of autonomous mobile systems. Instead of using

the raw point clouds obtained from 3D LiDAR sensors

directly, we investigate the use of range images for pole

extraction. Range image is a light and natural representation

of the scan from a rotating 3D LiDAR such as a Velodyne or

Ouster sensors. Operating on such an image is considerably
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Online Pole Segmentation on Range Images for Long-term LiDAR Localization in Urban Environments

faster than on the raw 3D point cloud. Besides, a range

image keeps the neighborhood information implicitly in its

2D structure and we can use this information for segmen-

tation. The detected poles in the range image can further

be used as pseudo pole labels to train a pole segmentation

neural network. After training once with pseudo pole la-

bels generated from different datasets, our learning-based

based method can detect poles in different environments

and achieve even better localization performance than our

geometry-based method. To achieve LiDAR localization, in

the mapping phase, we first project the raw point cloud into

a range image and then extract poles from that image, as

shown in Fig. 1. After obtaining the position of poles in the

range image, we use the ground-truth poses of the robot to

reproject them into the global coordinate system to build

a global map. During localization, we utilize Monte Carlo

localization (MCL) for updating the importance weights of

the particles by matching the poles detected from online

sensor data with the poles in the global map.

In sum, we make three key claims that our approach is

able to (i) extract more reliable poles in the scene compared

to the baseline method, as a result, (ii) achieve better online

localization performance in different environments, and

(iii) generate pseudo pole labels to train a pole segmenta-

tion network achieving better localization results and faster

runtime compared to the geometric method. These claims

are backed up by the paper and our experimental evaluation.

The code of our approach and the pole dataset are released

at: https://github.com/PRBonn/pole-localization.

2. Related Work

For localization given a map, there exists a large amount

of research. While many different types of sensors have been

used to tackle this problem [37], in this work, we mainly

concentrate on LiDAR-based approaches.

Traditional approaches to robot localization rely on

probabilistic state estimation techniques. A popular frame-

work is Monte Carlo localization [16], which uses a particle

filter to estimate the pose of the robot and is still widely used

in robot localization systems [4, 9, 13, 22, 36, 40, 47].

Besides the traditional geometry-based methods, more

and more approaches recently exploit deep neural networks

and semantic information for 3D LiDAR localization. For

example, Ma et al. [24] combine semantic information such

as lanes and traffic signs in a Bayesian filtering framework

to achieve accurate and robust localization within sparse

HD maps, whereas Tinchev et al. [38] propose a learning-

based method to match segments of trees and localize in

both urban and natural environments. Sun et al. [36] use a

deep-probabilistic model to accelerate the initialization of

the Monte Carlo localization and achieve a fast localization

in outdoor environments. Shi et al. [33] exploit a graph-

based network to register LiDAR point clouds. Wiesmann et

al. [44] propose a deep learning-based 3D network to com-

press the LiDAR point cloud, which can be used for large-

scale LiDAR localization. In our previous work [7, 8, 9], we

also exploit CNNs with semantics to predict the overlap be-

tween LiDAR scans as well as their yaw angle offset and use

this information to build a learning-based observation model

for Monte Carlo localization. The learning-based methods

perform well in the trained environments, while they usually

cannot generalize well in different environments or different

LiDAR sensors.

Instead of using dense semantic information estimated

by neural networks [27, 26, 23, 14], a rather lighter solution

has been proposed for long-term localization, which extracts

only pole landmarks from point clouds. There are usually

two parts in pole-based approaches, pole extraction and

pose estimation. For pole extraction, Sefati et al. [32] first

remove the ground plane from the point cloud and project

the rest points on a horizontal grid. After that, they cluster

the grid cells and fit a cylinder for each cluster. Finally,

a particle filter with nearest-neighbor data association is

used for pose estimation. Weng et al. [42] and Schaefer et

al. [30] use similar particle filter-based methods to estimate

the pose of the robot with different pole extractors. Weng

et al. [42] discretize the space and extract poles based on

the number of laser reflections in each voxel. Based on

that, Schaefer et al. [30] consider both the starting and end

points of the scan and thus model the occupied and free

space explicitly. Kümmerle et al. [21] use a nonlinear least-

squares optimization method to refine the pose estimation.

Spangenberg et al. [35] use stereo camera images to extract

poles and then feed them into a particle filter with odometry

and GPS data. Shi et al. [34] extract pole-like objects

from the point cloud by spatial independence analysis and

cylindrical or linear feature detection. They also classify the

pole-like objects into street lamps, traffic signs and utility

poles by 3D shape matching. Weng et al. [43] exploit the

reflective intensity information to extract traffic signs which

are always painted with highly reflective materials. Chen et

al. [6] fuse poles information into a non-linear optimization

problem to obtain the vehicle location. Plachetka et al. [29]

use a deep neural network for pole extraction by learning

encodings of the point cloud input. In contrast to the afore-

mentioned approaches, we use a projection-based method

and avoid the comparable costly processing of 3D point

cloud data. Thus, our implementation is fast.

This article is an extension of our previous conference

paper [17]. In our previous work, we propose a geometry-

based pole extractor on LiDAR point clouds, which uses

only range information without exploiting neural networks

or deep learning. Thus, it generalizes well to different envi-

ronments and different LiDAR sensors and does not require

new training data when moving to different environments.

Inspired by an automatically labeling method [11], in this

article, we further use the poles extracted by our geometry-

based method as pseudo labels to train a pole segmentation

network. Trained with a large number of pseudo pole labels

automatically generated by our geometry-based pole extrac-

tor on different datasets, our learning-based method can

generalize well in different environments and outperforms
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Figure 2: Overview of our pole-based localization system. A,

we project the LiDAR point cloud into a range image, and B,

extract poles in the image. C, based on the extracted poles,

we then build a global pole map of the environment. D, we

finally propose a pole-based observation model for MCL to

localize the robot in the map.

the geometry-based method. As for the network architec-

ture, we use SalsaNext [14], a state-of-the-art range image-

based semantic segmentation network. Instead of segment-

ing the environment into multiple classes like ground, struc-

ture, vehicle and human, in our case, we only distinguish the

poles from other objects.

3. Methodology

In this paper, we propose a range image-based pole

extractor for long-term localization using a 3D LiDAR

sensor. As shown in Fig. 2, we first project the LiDAR point

cloud into a range image (Sec. 3.1) and extract poles from

it using either a geometric (Sec. 3.2) or a learning-based

(Sec. 3.3) method. Based on the proposed pole extractor, we

then build a global pole map of the environment (Sec. 3.4).

In the localization phase, we extract poles online using

the same extractor and use a novel pole-based observation

model for Monte Carlo localization (Sec. 3.5).

3.1. Range Image Generation
The key idea of our approach is to use range images

generated from LiDAR scans for pole extraction. Following

the prior work [12, 13], we utilize a spherical projection for

range images generation. Each LiDAR point p = (x, y, z) is

mapped to spherical coordinates via a mapping Π ∶ ℝ
3
↦

ℝ
2 and finally to image coordinates, as defined by

(
u

v

)
=

(
1

2

[
1 − arctan(y, x)�−1

]
w

[
1 −

(
arcsin(z r−1) + |fdown|

)
f−1

]
ℎ

)
,

(1)

where (u, v) are image coordinates, (ℎ,w) are the height

and width of the desired range image, f = |fup| + |fdown| is

the vertical field-of-view (FOV) of the sensor (fup is the up

vertical FOV and fdown is the down vertical FOV). The fup
is a positive value in radian, while fdown is a negative value

in radian. The r = ||pi||2 is the range value of each point.

This procedure results in a list of (u, v) tuples containing

Algorithm 1: Range Image-based Pole Extraction

Input: Range Image Irange
Output: PoleParameters P with circle centers and

radiuses

1 Let O be the set of all valid pixel coordinates in Irange. Td

is the distance threshold to find neighbors, Tn is the

pixel count threshold, and Tℎ is the object height

threshold. Ha and Hb are the height lower bound and

higher bound. Ra and Rb are the radius lower bound and

higher bound.

2 while O ≠ ∅ do

3 create a new c in C; p ← O[0]; O ← O − p;

c ← c + {p}; create an empty N

4 foreach p
′
= Neigℎbor(p) ∈ O and

Distance(p
′
,p) < Td do

5 N ← N + p
′

6 end

7 while N ≠ ∅ do

8 p ← N[0]; N ← N− p; O ← O− p; c ← c+ {p}

9 foreach p
′
= Neigℎbor(p) ∈ O and

Distance(p
′
,p) < Td do

10 N ← N +Neigℎbor(p
′
)

11 end

12 end

13 Npixel ← the number of pixels in c

14 if Npixel < Tn then

15 C ← C − c

16 end

17 end

18 foreach c ∈ C do

19 w, ℎ ← W idtℎ(c),Heigℎt(c)

20 NSmallR ← the number of pixels in c whose range

value is smaller than its neighbor outside c

21 if ℎ∕w < 1 or NSmallR < � ⋅ Len(c) then

22 C ← C − c

23 end

24 end

25 foreach c ∈ C do

26 x, y, z ← 3D coordinates of pixels in c

27 if max(z) > Ha and min(z) < Hb and

(max(z) − min(z)) > Tℎ then

28 xc, yc, rc ← F itCircle(x, y)

29 NFree ← the number of the pixels in a small free

space outside the radius of the pole

30 if rc < Ra and rc > Rb and NFree < � ⋅ Len(z)

then

31 P ← P + {xc, yc, rc}

32 end

33 end

34 end

a pair of image coordinates for each pi, which we use to

generate our proxy representation. Using these indices, we

extract for each pi, its range r, its x, y, and z coordinates,

and store them in the image.

3.2. Geometry-based Pole Extractor
We extract poles based on the range images generated

in the previous step. The general intuition behind our pole
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Figure 3: Visualization of results on each step of our

geometric pole extractor. The first image shows the range

image. The second image represents the clustering result

and the third one shows the pole candidates after applying

2D geometric constraints. The last one is the final pole

extraction result.

extraction algorithm is that the range values of the poles are

usually significantly smaller than the backgrounds. Based

on this idea and as specified in Alg. 1, our first step is to

cluster the pixels of the range image into different small

regions based on their range values. We first pass through all

pixels in the range image, from top to bottom, left to right.

We put all pixels with valid range data in an open set O.

For each valid pixel p, we check its neighbors including the

left, right and below ones. If there exists a neighbor with

a valid value and the range difference between the current

pixel and its neighbor is smaller than a threshold Td , we

add the current pixel to a cluster set c and remove it from

the open set O. We do the same check iteratively with the

neighbors until no neighbor pixel meets the above criteria,

and we then get a cluster of pixels. After checking all the

pixels in O, we will get a set C with several clusters and

each cluster represents one object. If the number of pixels in

one cluster is smaller than a threshold Tn, we regard it as an

outlier and ignore it.

The next step is to extract poles from these objects using

2D geometric constraints. To this end, we exploit both the

range information and the 3D coordinates (x, y, z) of each

pixel. We first check the aspect ratio of each cluster. Since

we are only interested in pole-like objects, whose height is

usually larger than its width, we therefore discard the cluster

with aspect ratio ℎ∕w < 1. Another heuristic we use is the

fact that a pole usually stands alone and has a significant

distance from background objects. NSmallR is the number

of points in cluster c whose range value is smaller than

its neighbor outside c, we discard the cluster if NSmallR is

smaller than � times the number of all points in the cluster.

To exploit the 3D coordinates (x, y, z) of each pixel, we

calculate max(z) − min(z) of each cluster and only take a

cluster as a pole candidate if max(z)−min(z) > Tℎ. Besides,

we are only interested in poles whose height is higher

than Ha. Based on experience, we also set a threshold Hb

for the lowest position of the pole to filter outliers. For

each pole candidate, we then fit a circle using the x and y

coordinates of all points in the cluster and get the center and

the radius of that pole. We filter out the candidates with too

small or too large radiuses and candidates that connect to

other objects by checking the free space around them. After

the above steps, we finally extract the positions and radiuses

of poles. As an example, Fig. 3 visualize the intermediate

results on each step of our geometric pole extractor.

3.3. Learning-based Pole Segmentation Trained

With Pseudo Labels
As shown in [11], geometric information can be used to

automatically generate labels for training a LiDAR-based

moving object segmentation network and achieve good

performance in various environments. Such auto-labeling

methods enable network learning in a self-supervised man-

ner, which saves the extensive manual labeling effort and

improves the generalization ability of the learning-based

method. Inspired by it, we use the poles detected by our

geometry-based pole extractor to generate pseudo labels to

train an online pole segmentation network.

We use our geometry-based method to generate pseudo

pole labels from NCLT [5], SemanticKITTI [2], and Mul-

Ran [20] datasets. In this work, we do not design a new

network architecture but reuse networks that have been

successfully applied to LiDAR-based semantic segmenta-

tion in the past. We adopt and evaluate SalsaNext [14], an

encoder-decoder architecture with solid performances on

semantic segmentation tasks. SalsaNext [14] achieves state-

of-the-art performances on SemanticKITTI dataset among

all range image-based semantic segmentation networks.

Therefore, we choose it as the base network architecture

for our learning-based method. Instead of segmenting the

environment into multiple classes like ground, structure,

vehicle and human, in our case, we only distinguish the

poles from other objects. After the segmentation, similar

filtering steps as used in the geometric method are applied

to remove outliers. SalsaNext network is comparably light-

weight, and can achieve real-time operation, i.e., run faster

than the commonly used frame rate of the employed LiDAR

sensor, which is 10Hz for Ouster and Velodyne scanners.

For more detailed information about the network, we refer

to the original paper [14].

For training the segmentation network, we directly feed

them with the range images plus the pseudo pole labels

generated from our geometry-based pole extractor. We use

the same loss functions as used in the original segmen-

tation methods, while mapping all classes into two per-

point classes, poles and non-poles. We retrain the network

and evaluate the pole extracting performance with our pole

datasets and also localization tasks. Fig. 4 shows the training

pipeline of our proposed learning-based pole segmentation

method. Note that, we train the network with pseudo pole

labels generated from different datasets, and later use the

same model to extract poles in different environments.

3.4. Pole-based Mapping
To build the global map for localization, we follow the

same setup as introduced by Schaefer et al. [30], splitting
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Figure 4: Overview of our learning-based pole extraction approach. We first use the geometric method to generate range

images and pseudo pole labels on multiple datasets, including NCLT, KITTI, and MulRan. Then, we train a deep neural

network to extract pole-like objects directly on the range images. Our learning-based pole extractor generalizes well to all

three datasets with a single model.

the ground-truth trajectory into shorter sections with equal

length, extracting poles in these sections separately and

finally merging them into a global pole map. Since the

provided poses are not very accurate for mapping [30],

instead of aggregating a noisy submap, we only use the

middle LiDAR scan of each section to extract poles. We

merge multiple overlapped pole detections by averaging

over their centers and radiuses and apply a counting model

to filter out the dynamic objects. Only those candidate poles

that appear multiple times in continuous sections are added

to the map.

3.5. Monte Carlo Localization
Monte Carlo localization (MCL) is commonly imple-

mented using a particle filter [16]. MCL realizes a recur-

sive Bayesian filter estimating a probability density p(xt ∣

z1∶t,u1∶t) over the pose xt given all observations z1∶t and

motion controls u1∶t up to time t. This posterior is updated

as follows:

p(xt ∣ z1∶t,u1∶t) = � p(zt ∣ xt)⋅

∫ p(xt ∣ ut, xt−1) p(xt−1 ∣ z1∶t−1,u1∶t−1) dxt−1,

(2)

where � is a normalization constant, p(xt ∣ ut, xt−1) is the

motion model, p(zt ∣ xt) is the observation model, and

p(xt−1 ∣ z1∶t−1,u1∶t−1) is the probability distribution for the

prior state xt−1.

In our case, each particle represents a hypothesis for

the 2D pose xt = (x, y, �)t of the robot at time t. When

the robot moves, the pose of each particle is updated

based on a motion model with the control input ut or the

odometry measurements. For the observation model, the

weights of the particles are updated based on the difference

between expected observations and actual observations. The

observations are the positions of the poles. We match the

online observed poles with the poles in the map via nearest-

neighbor search using a k-d tree. The likelihood of the j-th

particle is then approximated using a Gaussian distribution:

p
(
zt ∣ xt

)
∝

N∏
i

⎛⎜⎜⎜⎝
exp

⎛⎜⎜⎜⎝
−
1

2

d

(
zi
t
, zi

j

)2

�2
d

⎞⎟⎟⎟⎠
+ �

⎞⎟⎟⎟⎠
, (3)

where N is the number of matched poles in the current scan,

�2
d

is the position uncertainty of the poles, d corresponds

to the difference between the online observed pole zi
t

and

matched pole in the map zi
j

given the position of the

particle j. We use the Euclidean distance between the pole

positions to measure this difference. The constant � accounts

for the probability that a detected pole is not part of the map.

This constant is crucial for the robustness of localization

when there are many outliers. If the number of effective

particles decreases below a threshold [19], the resampling

process is triggered and particles are sampled based on their

weights.

4. Experimental Evaluation

The main focus of this work is an accurate and efficient

pole extractor for long-term LiDAR localization. We present

our experiments to show the capabilities of our method.

The experiments furthermore support our key claims that

our method is able to: (i) extract more reliable poles in

the environment compared to the baseline method, as a

result, (ii) achieve better online localization performance

in different environments, and (iii) generate pseudo pole

labels to train a pole segmentation network achieving better

localization results and faster runtime compared to the

geometric method.

4.1. Datasets for Pole Extraction and LiDAR

Localization
There are few public datasets available to evaluate pole

extraction performance. To this end, we label the poles in

session 2012-01-08 of NCLT dataset by hand and release
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Figure 5: Our pole extraction datasets. The first 11 figures show the ground truth pole positions of sequence 00-10 of

SemanticKITTI, and the last one (at the right bottom corner) shows pole positions of the session 2012-01-08 of NCLT. Each

blue dot represents the position of one pole.

this dataset for public research use. For the reason that the

original NCLT ground-truth poses are inaccurate [30], the

aggregated point cloud is a little blurry. Therefore, to create

the ground-truth pole map of the environment, we partition

the ground-truth trajectory into shorter segments of equal

length. For each segment, we aggregate the point cloud

together and use Open3D [46] to render and label the pole

positions. We only label those poles with high certainty and

ignore those blurry ones. Besides our own labelled data, we

also reorganize the SemanticKITTI [2] dataset sequences

00-10 by extracting the pole-like objects like traffic signs,

poles and trunk, and then clustering the point clouds to

generate the ground-truth pole instances.

To assess the localization reliability and accuracy of our

method, we use NCLT dataset [5] and MulRan dataset [20].

These two datasets are collected in different environments

(U.S., Korea) with different LiDAR sensors (Velodyne

HDL-32E, Ouster OS1-64). In these two datasets, the

robot passes through the same place multiple times with

month-level temporal gaps, hence ideal to test the long-

term localization performance. We compare our methods to

both a pole-based method proposed by Schaefer et al. [30]

and the range image-based method proposed by Chen et

al. [13]. We reproduce their results using the public available

codes. For the SemanticKITTI dataset, there is no overlap

area between different sequences for evaluating long-term

localization. Therefore, we only used the extracted pole

labels from the SemanticKITTI dataset to train our network.

Fig. 5 shows examples of our proposed pole datasets.

4.2. Pole Extractor Performance
The first experiment evaluates the pole extraction per-

formance of our approach and supports the claim that our

range image-based method outperforms the baseline method

in pole extraction.

We evaluate both our geometry-based pole extractor,

named Ours-G, and our learning-based pole segmentation

method, named Ours-L. For training the pole segmentation

network, we use data from multiple datasets, including

the session 2012-01-08 in NCLT dataset, sequence KAIST

02 in MulRan dataset and sequence 00-02, 05-09 in Se-

manticKITTI dataset. For validation, we use sequences 03

and 04 in SemanticKITTI dataset and sequence 10 for

testing. We train the network for 150 epochs using stochastic

gradient descent with an initial learning rate of 0.01 and

the learning rate decay is 0.01. The batch size is 12 and

the spatial dropout probability is 0.2. The size of the range

image is 32×256 and the valid range values are normalized

between 0 and 1. To prevent overfitting, we augmented the

data by applying a random rotation or translation, flipping

randomly around the y-axis with a probability of 0.5. Dur-

ing the matching phase, we find the matches via nearest-

neighbor search using a k-d tree with 1m distance bounds.

Tab. 1 summarizes the precision, recall and F1 score

of our method and Schaefer et al. [30] with respect to

the ground-truth pole map on both NCLT dataset and Se-

manticKITTI dataset. As can be seen, our methods achieve

better performance and extract more poles in both environ-

ments compared to the baseline method. Compared to our

geometry-based pole extractor, our learning-based method
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Figure 6: Pole extraction examples using our geometric and learning-based pole extractor. For each sample, the first figure

is the range image, the second one is the pole extraction results by our geometric method, and the last one shows the pole

extraction results by our learning-based method. Note that, for the learning-based method we get all the results on three

datasets with a single trained model.

finds more poles while introducing more false positives,

which decreases precision. This can also be seen in Fig. 6,

which shows pole extraction examples of our geometric and

learning-based pole extractor.

Note that we trained our pole segmentation network

only once with pseudo pole labels generated from different

datasets and evaluated it on multiple different datasets.

As can be seen in Fig. 6, the environments of different

datasets vary a lot, while our learning-based method can

still extract poles well without fine-tuning, which shows

a good generalization ability of our method. The possible

reason for that is the range values of the poles are usually

significantly different than the backgrounds, which makes

poles distinctive and easy to be detected on range images.

Compared to multi-class segmentation, it is easier for the

neural network to learn a more general model to detect poles

based on the range images [10]. Furthermore, the learning-

based method has a higher recall than the geometry-based

method, but with a lower precision, which means that the

learning-based method detects more true positives, but also

more false positives. We use the detected poles as landmarks

for MCL, which is a very robust probabilistic localization

system. Thus, the localization performance will not be

influenced by little false positives, but benefits from higher

recalls with more landmarks, as shown in the next section.

4.3. Localization Performance
The second experiment is presented to support the claim

that our approach achieves higher accuracy on localization

in different environments. For all the experiments, we use

the same setup as used in the baselines and report their

results from the original work.

Table 1

Pole Extraction Precision, Recall, and F1 Score on NCLT and

KITTI datasets.

Dataset Method Precision Recall F1 Score

NCLT
Schaefer [30] 0.690 0.386 0.495
Ours-G 0.765 0.657 0.706

Ours-L 0.675 0.674 0.674

Semantic
KITTI

Schaefer [30] 0.621 0.380 0.455
Ours-G 0.687 0.439 0.515
Ours-L 0.607 0.582 0.594

4.3.1. Localization on the NCLT Dataset

The NCLT dataset contains 27 sessions with an average

length of 5.5 km and an average duration of 1.3 h over the

course of 15 months. The data is recorded at different times

over a year, different weather and seasons, including both

indoor and outdoor environments, and also lots of dynamic

objects. The trajectories of different sessions have a large

overlap. Therefore, it is an ideal dataset for testing long-term

localization in urban environments.

We first build the map following the setup introduced

by Schaefer et al. [30], which uses the laser scans and

the ground-truth poses of the first session. Since in later

sessions the robot sometimes moves into unseen places for

the first session, we therefore also use those scans whose

position is 10m away from all previously visited poses to

build the map. During localization, we use 1000 particles

and use the same initialization as Schaefer et al. [30] by

uniformly sampling positions around the first ground-truth

pose within a 2.5m circle. The orientations are uniformly

sampled from −5 to 5 degrees. We resample particles if the

number of effective particles is less than 50%. To get the
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Session Date Δpos RMSEpos Δang RMSEang

[m] [m] [°] [°]

Schaefer [30] Ours-G Ours-L Schaefer [30] Ours-G Ours-L Schaefer [30] Ours-G Ours-L Schaefer [30] Ours-G Ours-L

2012-01-08 0.130 0.115 0.117 0.178 0.146 0.141 0.663 0.626 0.633 0.857 0.810 0.808

2012-01-15 0.156 0.146 0.147 0.225 0.204 0.205 0.760 0.750 0.753 0.999 0.982 0.989

2012-01-22 0.172 0.149 0.149 0.222 0.190 0.185 0.939 0.911 0.912 1.291 1.238 1.237

2012-02-02 0.155 0.136 0.130 0.205 0.172 0.157 0.720 0.699 0.700 0.975 0.922 0.917

2012-02-04 0.144 0.134 0.130 0.195 0.167 0.158 0.684 0.671 0.670 0.903 0.876 0.866

2012-02-05 0.148 0.138 0.145 0.210 0.206 0.250 0.690 0.694 0.700 0.947 0.937 0.949

2012-02-12 0.269 0.253 0.247 1.005 1.002 1.003 0.802 0.786 0.778 1.040 1.019 0.997

2012-02-18 0.149 0.131 0.129 0.221 0.175 0.161 0.699 0.676 0.681 0.938 0.905 0.909

2012-02-19 0.148 0.137 0.135 0.194 0.183 0.168 0.704 0.692 0.710 0.944 0.923 0.935

2012-03-17 0.149 0.137 0.133 0.191 0.174 0.159 0.830 0.798 0.797 1.062 1.031 1.022

2012-03-25 0.200 0.178 0.170 0.262 0.235 0.221 1.418 1.379 1.365 1.836 1.789 1.767

2012-03-31 0.143 0.135 0.129 0.184 0.176 0.155 0.746 0.729 0.728 0.973 0.936 0.932

2012-04-29 0.170 0.154 0.156 0.251 0.222 0.227 0.829 0.820 0.825 1.079 1.069 1.070

2012-05-11 0.161 0.132 0.131 0.225 0.163 0.155 0.773 0.747 0.766 0.998 0.965 0.987

2012-05-26 0.158 0.142 0.140 0.217 0.183 0.165 0.690 0.672 0.681 0.889 0.871 0.875

2012-06-15 0.180 0.145 0.147 0.238 0.186 0.180 0.659 0.646 0.630 0.879 0.874 0.842

2012-08-04 0.210 0.169 0.159 0.340 0.230 0.192 0.884 0.843 0.847 1.143 1.093 1.091

2012-08-20 0.189 0.156 0.152 0.264 0.207 0.183 0.711 0.688 0.696 0.941 0.906 0.905

2012-09-28 0.206 0.171 0.155 0.311 0.241 0.190 0.731 0.726 0.714 0.952 0.949 0.926

2012-10-28 0.217 0.185 0.168 0.338 0.281 0.230 0.693 0.680 0.678 0.919 0.909 0.900

2012-11-04 0.257 0.208 0.181 0.456 0.317 0.227 0.746 0.718 0.701 0.996 0.973 0.928

2012-11-16 0.403 0.296 0.251 0.722 0.435 0.370 1.467 1.403 1.378 2.031 1.919 1.895

2012-11-17 0.243 0.201 0.172 0.377 0.323 0.219 0.686 0.685 0.677 0.959 0.948 0.914

2012-12-01 0.266 0.226 0.212 0.492 0.429 0.445 0.674 0.665 0.647 0.930 0.887 0.854

2013-01-10 0.217 0.187 0.164 0.278 0.226 0.190 0.689 0.627 0.642 0.911 0.806 0.817

2013-02-23 2.470 0.236 0.207 5.480 0.567 0.492 1.083 0.592 0.593 1.769 0.846 0.845

2013-04-05 0.365 0.295 0.265 0.920 0.869 0.820 0.654 0.642 0.642 1.028 1.036 1.016

Average 0.284 0.174 0.164 0.526 0.293 0.268 0.801 0.761 0.761 1.081 1.016 1.007

Table 2

Results of our experiments with the NCLT dataset compared to Schaefer [30], averaged over ten localization runs per session.

The variables Δpos and Δang denote the mean absolute errors in position and heading, respectively, RMSEpos and RMSEang

represent the corresponding root mean squared errors.

pose estimation, we use the average poses of the best 10%

of the particles.

Tab. 2 shows the position and orientation errors for every

session. We run the localization 10 times and compute the

average means and RMSEs to the ground-truth trajectory.

The results show that both our geometric and learning-based

methods surpass Schaefer et al. [30] in almost all sessions

with an average error of 0.174m and 0.164m respectively.

Besides, in session 2013-02-23, the baseline method fails to

localize resulting in an error of 2.470m, while our method

never loses track of the robot position (Fig. 7). This is

because our pole extractor can robustly extract poles even

in an environment where there are fewer poles. Schaefer et

al. [31] analyze their localization failure in session 2013-02-

23 for the reason that the barrels in a construction area are

moved a few meters to the right in the later session. As these

barrels are detected as poles by their approach, they are built

in the map and cause the wrong pole matching to the map in

this area. In our pole extraction algorithms, we discard those

poles with too large radiuses. Thus, the barrels are not a part

of our map and our localization will not be influenced by

the movement of these barrels. Interestingly, our learning-

based method improves localization results more than our

geometry-based method in most sessions. It may be caused

by a more general pole segmentation model trained with

pseudo labels generated from different environments.

Figure 7: Comparison of localization results of Schaefer et

al. [30] and our method in session 2013-02-23 on NCLT

dataset. The black dots are the poles on the map. The grey

line is the ground-truth trajectory. The blue line is our result

and the red one is of the baseline method. As can be seen,

Schaefer’s method loses track of the robot in some places,

while our method always tracks the correct robot poses with

respect to the ground truth.

4.3.2. Localization on the MulRan Dataset

To further show the generalization ability of our method,

we test both our geometric and learning-based methods on
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Table 3

Localization Results on MulRan Dataset.

Schaefer [30] Chen [13] Ours-G Ours-L

RMSEpos [m] 1.82 0.83 0.48 0.49

RMSEang [°] 0.56 3.14 0.27 0.28

Table 4

Pole Extraction Runtime Results.

NCLT KITTI MulRan

Ours-G 12Hz 2Hz 4Hz

Ours-L 17Hz 16Hz 16Hz

the MulRan dataset, which was collected from a different

type of LiDAR sensor in a different environment. We use

the MulRan dataset KAIST 02 sequence (collected on 2019-

08-23) to build the global map and use KAIST 01 sequence

(collected on 2019-06-20) for localization. Tab. 3 shows the

location and yaw angle RMSE errors on MulRan Dataset.

As can be seen, our geometric and learning-based methods

consistently achieve a better performance than both baseline

methods [30, 13]. Note that, we train our pole segmentation

only once, and there is no fine-tuning when applying to a

new environment.

4.4. Runtime
This experiment has been conducted to support the

claim that our approach runs online at the sensor frame

rate. As shown in Tab. 4, we compare our method to the

baseline method proposed by Schaefer et al. [30] on three

different datasets, including NCLT (session 2012-01-08),

KITTI (sequence 09) and MulRan (KAIST 02) datasets.

As reported in their paper, on NCLT dataset the baseline

method takes an average of 1.33 s for pole extraction on a

PC using a GPU. We tested our geometric method without

using a GPU and our method only needs 0.09 s for pole

extraction and all MCL steps take less than 0.1 s yielding

a run time faster than the commonly used LiDAR frame rate

of 10Hz.

The performance of geometry-based pole extractors,

both Schaefer’s and ours, is influenced by the size of the

input data, and it is a trade-off between localization accuracy

and speed. To achieve good localization results for the

geometric method, we use the range image size of 32 × 256

for NCLT and 64 × 500 for KITTI and MulRan, which

leads to a decrease in the runtime performance. However,

our learning-based method is not influenced by the size of

input data. In our case, we fix the size of network input as

32 × 256, and our network always works online with good

localization performance with a single GPU, which shows a

significant advantage of our learning-based method.

5. Conclusion

In this paper, we presented a novel range image-based

pole extraction approach based on geometric features for

online long-term LiDAR localization. Our method exploits

range images generated from LiDAR scans. This allows our

method to process point cloud data rapidly and run online.

We further use the detected poles by our geometric pole

extractor as pseudo labels to train a deep neural network

for online pole segmentation. Our learning-based pole ex-

tractor can generalize to different types of datasets without

fine-tuning, despite the environments of different datasets

varying a lot. We implemented and evaluated our approach

on multiple different datasets and provided comparisons to

other existing techniques and supported all claims made in

this paper. The experiments suggest that both our geometric

and learning-based methods can accurately extract more

poles in the environments and achieve better performance

in long-term localization tasks than the baseline methods.

Moreover, we release our implementation and pole dataset

for other researchers to evaluate their algorithms. In the

future, we plan to explore the usage of other features such

as road markings, curb, and intersection features, to improve

the robustness of our method.
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