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Abstract

In social and service robotics, complex collaborative tasks are expected to be executed while inter-

acting with humans in a natural and fluent manner. In this scenario, the robotic system is typically pro-

vided with structured tasks to be accomplished, but must also continuously adapt to human activities,

commands, and interventions. We propose to tackle these issues by exploiting the concept of cogni-

tive control, introduced in cognitive psychology and neuroscience to describe the executive mecha-

nisms needed to support adaptive responses and complex goal-directed behaviors. Specifically, we rely

on a supervisory attentional system to orchestrate the execution of hierarchically organized robotic

behaviors. This paradigm seems particularly effective not only for flexible plan execution but also for

human–robot interaction, because it directly provides attention mechanisms considered as pivotal for

implicit, non-verbal human–human communication. Following this approach, we are currently devel-

oping a robotic cognitive control framework enabling collaborative task execution and incremental task

learning. In this paper, we provide a uniform overview of the framework illustrating its main features

and discussing the potential of the supervisory attentional system paradigm in different scenarios where

humans and robots have to collaborate for learning and executing everyday activities.
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1. Introduction

Social and service robots are expected to effectively assist humans during their daily activ-

ities providing a natural and fluent interaction. In these settings, robotic systems are often

required to collaborate with humans during the execution of multiple tasks, while continu-

ously adapting their behavior to the human activities and intentions. From the human side,

it is also desirable that the robot behavior is perceived as safe, compliant, and predictable.

In order to support this natural and effective interaction, human monitoring and communica-

tion processes are to be situated in the operative context and strictly integrated with the robot

control processes (activity planning, behavior orchestration, action execution, etc.).

In the robotics literature, several frameworks have been proposed to conciliate natural

human–robot interaction and the coordinated execution of goal-oriented activities. The dom-

inant approach relies on architectures for plan-based autonomy, which leverage several plan-

ning systems and replanning processes to continuously align the robot planned actions with

respect to the interpreted human activities and commands. This paradigm has been suc-

cessfully deployed in the field and industrial robotics to enable mixed initiative interaction

and adjustable autonomy (Carbone, Finzi, Orlandini, & Pirri, 2008; Karpas, Levine, Yu,

& Williams, 2015); on the other hand, when humans and robots interact in close proxim-

ity during daily tasks this continuous planning/replanning process is usually computation-

ally expensive and not reactive and smooth enough to provide a natural and fluent interac-

tion. Alternative approaches are provided by the behavior-based robotics paradigm (Breazeal,

Edsinger, Fitzpatrick, & Scassellati, 2001; Scheutz, Harris, & Schermerhorn, 2013) and cog-

nitive robotics (Baxter, de Greeff, & Belpaeme, 2013; Trafton et al., 2013). In particular,

cognitive models and architectures have been exploited to capture several processes involved

in human–robot interaction (motivations, emotions, drives, attention, communication, social

interaction, etc.). However, the integration of human–robot interaction/communication pro-

cesses with the processes of generation and orchestration of collaborative task-oriented activ-

ities remains a challenging issue. In cognitive psychology and neuroscience, the executive

mechanisms needed to support flexible, adaptive responses and complex goal-directed cogni-

tive processes and behaviors are associated with the concept of cognitive control (Botvinick,

Braver, Barch, Carter, & Cohen, 2001; Norman & Shallice, 1986; Posner & Snyder, 1975;

Rubinstein, Meyer, & Evan, 2001). Notwithstanding their relevance in cognitive science, cog-

nitive control models have been rarely exploited in robotic systems (Caccavale & Finzi, 2017;

Caccavale, Saveriano, Finzi, & Lee, 2019; Garforth, McHale, & Meehan, 2006; Kasderidis

& Taylor, 2004; Kawamura, Gordon, Ratanaswasd, Erdemir, & Hall, 2008). In particular,

executive attention processes, which are considered as key mechanisms for flexible action

execution and coordination in humans (Cooper & Shallice, 2000, 2006; Norman & Shallice,

1986), have been largely neglected in the robot planning and execution literature. In contrast,

we believe that similar attention-based control processes are expected to play a crucial role

in robotic systems as well, since the associated activation/regulation mechanisms can support

human monitoring, flexible orchestration of multiple tasks, human–robot activity coordina-

tion, learning by demonstration, etc. Specifically, we propose to deploy a supervisory atten-

tional system (SAS) executive model (Cooper & Shallice, 2000, 2006; Norman & Shallice,
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1986) to monitor and orchestrate the execution of hierarchically organized robot (and human)

behaviors. This paradigm seems particularly effective not only for flexible execution of multi-

ple competing tasks but also for human–robot interaction, since it naturally provides attention

mechanisms (attention manipulation, joint attention, etc.) considered as pivotal for implicit,

non-verbal human–human communication (Tomasello, 2010). In a SAS-based cognitive con-

trol framework, activities can be performed exploiting action schemata, which specify well-

learned patterns of behaviors or cognitive processes enabling task/subtask accomplishment.

Schemata are hierarchically organized, each endowed with an activation value. Each schema

can be activated, aroused, or inhibited by perceptual stimuli or other active schemata. Multi-

ple conflicting schemata can be active at the same time; therefore, orchestration mechanisms

are needed. In this respect, SAS provides two main processes: contention scheduling and

supervisory attention system. Contention scheduling is a low-level mechanism that exploits

schemata activation values to solve conflicts among competing schemata in a reactive fashion.

Instead, the supervisory attentional system is a higher level mechanism that affects contention

scheduling in the case of non-routine situations to enable flexible/adaptive behavior orches-

tration and goal-oriented responses.

In this paper, we discuss the effectiveness of similar action orchestration mechanisms for

robot control and human–robot collaboration. In particular, we claim that the SAS paradigm

provides key attention-based regulation mechanisms, which not only are crucial for natu-

ral human–robot communication and collaborative task execution but are also practical and

effective for the accomplishment of real-world everyday robotic tasks. We discuss these issues

presenting a uniform overview of a SAS-based cognitive control framework we are currently

developing (Caccavale & Finzi, 2017, 2019; Caccavale et al., 2019; Caccavale et al., 2017),

illustrating its main features along with application scenarios where humans and robots have

to collaborate for learning and executing incrementally complex everyday activities. In these

case studies, we highlight the relevance of attention-based regulation mechanisms for flexi-

ble and collaborative execution of multiple competing tasks/subtasks, implicit human–robot

communication, and task learning by demonstration.

2. An attention-based robotic executive framework

In order to enable natural and fluent human–robot interaction during collaborative execu-

tion of everyday activities, the robotic system needs to be endowed with executive functions

to orchestrate and modulate multiple processes, both reactive and goal directed, while rapidly

and smoothly adapting task execution to environmental changes and human interventions. For

instance, a robotic assistant that collaborates with a human coworker for beverage prepara-

tion in a kitchen workspace is expected to be capable of monitoring and executing different

concurrent, competing, and interleaved tasks (e.g., prepare tea, coffee, cocktails) composed

of various subtasks (e.g., take bottles, glasses, pour liquids), in continuous interaction with

human coworkers, which may either directly execute subtasks (e.g., open bottles, pick/place

containers) or delegate/change tasks and subtasks to the robotic coworker (e.g., prepare a

coffee or take a teapot) through rapid verbal/non-verbal signals (e.g., pointing, verbal cues).
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Fig. 1. System architecture. The attentional executive system (AS) orchestrates the sensorimotor processes

collected in the behavior-based system (BS). AS continuously allocates/deallocates hierarchical tasks in WM

retrieved from the LTM, while behaviors in BS compete for shared resources (state variables and robot devices).

AS also interacts with external modules like task/motion planners (Planner) and human–robot interaction (HRI)

systems.

Here, not only the order of operations to accomplish the tasks can dynamically change, but

also the division of work between the human and the robot is not predetermined. Moreover,

the interpretation of human activities and intentions is task and context dependent. In these

scenarios, executive attention mechanisms play a primary role in activity monitoring, task

regulation and switching, attention manipulation, and implicit communication. To endow a

robotic system with such mechanisms, we propose to deploy a SAS-inspired cognitive con-

trol paradigm, where attention to action (Norman & Shallice, 1986) is exploited to regulate

the execution of robotic activities at different levels of abstraction. The underlying assump-

tion is that supervisory attention and contention scheduling can be exploited at the core of a

robotic executive control process to reduce continuous task replanning, support flexible exe-

cution of multiple concurrent tasks with smooth and human-legible task switching, and enable

attention-based human–robot interaction/communication. The design principle is to provide

a practical attention-based executive framework, suitable for real-world collaborative robotic

systems, which is also compatible with AI methods for planning, execution, learning, and

human–robot interaction/communication.

2.1. System architecture

An abstract representation of the proposed system is illustrated in Fig. 1. The architec-

ture is based on a working memory (Baddeley, 1993, 1996), with executive control processes
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regulated by a SAS-inspired framework. The executive system exploits a long-term mem-

ory (LTM), a procedural memory where all the available/learned tasks are stored (e.g., pro-

cedures to prepare beverages), a working memory (WM) containing context-relevant tasks

recruited for execution or monitoring, and a behavior-based system (BS) collecting sets of

routinized behaviors, representing instantiated sensorimotor processes competing for the exe-

cution (e.g., picking a glass). Behaviors can be designed or trained to control the robot actu-

ators, acquire data from the sensors, and update the WM. Competitions among behaviors for

shared resources are regulated by attentional processes.

2.2. Task representation and long-term memory

We assume that the repository of procedural knowledge available to the system is stored

in a LTM, which collects the description of the activities the robotic system can monitor

and execute. Following a typical approach in cognitive science (Cooper & Shallice, 2000,

2006; Kleijn, Kachergis, & Hommel, 2014; Lashley, 1951; Norman & Shallice, 1986) and

AI (Nau et al., 2003; Nicolescu & Mataric, 2003), we assume that activities are organized as

hierarchical (and goal-directed) tasks to be accomplished (e.g., a coffee preparation can be

decomposed into different steps). In our computational framework, each activity is an action

schema symbolically represented by a predicate in the form t (x1, . . . , xn), where t is the name

of the task and x1, . . . , xn are parameters to be online instantiated. Tasks can be either con-

crete or abstract, where the concrete ones represent primitive sensorimotor processes, while

the abstract ones represent complex activities to be further hierarchically decomposed into

simpler subtasks. As in hierarchical task network representations (HTNs) (Nau et al., 2003),

multiple decompositions can be available for an abstract task, representing alternative meth-

ods for task accomplishment. Analogously to Cooper and Shallice (2006), tasks are also asso-

ciated with preconditions and postconditions. In our framework, preconditions are proposi-

tional formulas to be satisfied to enable the execution of the task, while postconditions are to

be satisfied when a task is completed. For example, during a beverage preparation, the task

take(glass) can be associated with the precondition on(glass, table) and the holding(glass)

postcondition. In the case of concrete tasks, preconditions and postconditions are represented

by a Stanford Research Institute Problem Solver (STRIPS)-like representation (Fikes & Nils-

son, 1971), this way our task representation can also be exploited as a planning domain for

both classical and HTN planners, which can be invoked by the executive system.

2.3. Working memory

In order to be monitored and executed, the activities specified in LTM are to be instanti-

ated and allocated into WM. Specifically, an activity is enabled in WM once its definition is

retrieved from LTM, instantiated with concrete parameters, and linked to the WM structure.

This process is recursively repeated with the associated subtasks, until the primitive actions.

Notice that multiple competing activities can be allocated and expanded in the WM (e.g., con-

current tasks, alternative conflicting schemata, or instances of the same task/subtask, etc.). In

our computational model, this task set is represented by an annotated rooted directed graph
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(r, S, E ), whose nodes s ∈ S represent tasks to be accomplished, while the edges E represent

parental relations among tasks/subtasks. Each node s ∈ S is denoted by a tuple (b, t, q, e, p),

where b is the name of a task, t represents the set of the associated subtasks of b, q represents

the enabling condition (precondition), e the activation value, while p is the postcondition.

Precondition, postconditions, and activation values are continuously monitored and updated

during task execution. An activity/task is enabled when its precondition is satisfied along with

the preconditions of all the ancestor nodes in WM; conversely, if a task is accomplished or

dismissed (e.g., due to a failure or an external request), this is removed from the WM along

with its hierarchical decomposition. Activation values are updated by top-down and bottom-

up attention mechanisms as explained below. Following the beverage preparation example, in

Eq. 1, we describe a node that implements the abstract subtask take(glass).

b = take(glass),

t = 〈goto(glass), pickup(glass)〉,

q = on(glass, table),

e = 1,

p = holding(glass).

(1)

This subtask is further decomposed into two subtasks: goto(glass) (abstract) and pickup(glass)

(concrete). The node is enabled if the glass is on the table (on(glass, table) precondition) with

an activation value of 1 and it is accomplished when the robot holds the glass.

2.4. Activity allocation in WM

The WM structure is managed by the control cycle, which continuously monitors, updates,

and allocates/deallocates hierarchical activities. Task allocation may depend on external

requests (e.g., a make(coffee) command issued by a human or by a planning system), sub-

task expansion (e.g., a take(coffee) method retrieved from LTM to execute make(coffee)),

or environmental affordance elicitation (e.g., take(glass) if glass is reachable). If multiple

schemata in LTM are eligible to expand the current WM structure, different selection policies

can be deployed. For instance, we can allocate a n-best set of instances whose assessed acti-

vation values exceed a suitable threshold. More complex activity recruiting mechanisms as

in Anderson, Matessa, and Lebiere (1997) and Franklin, Madl, and D’Mello (2014) may be

introduced as well. Since the LTM schemata can be mapped into HTN planning domains

(Caccavale, Cacace, Fiore, Alami, & Finzi, 2016), a task hierarchy instance can also be

externally generated by an HTN planner (de Silva, Lallement, & Alami, 2015; Nau et al.,

2003) and then directly allocated in WM. Multiple plans may also be allocated in WM, while

concrete activity execution depends on the attention regulations and contention-scheduling

mechanisms. Therefore, in contrast to typical AI plan-monitoring systems, the allocated plans

do not fully constraint the execution, instead they provide attentional guidance used to bias the

executive system toward the accomplishment of planned activities. In Caccavale et al. (2016),

we also show how multiple alternative methods competing in WM for the same task can sup-

port fast opportunistic plan repairs when the human behavior diverges from the planned one.
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2.5. Behavior-based system

The concrete tasks allocated in WM represent real sensorimotor processes, that is, primi-

tive behaviors that can be reactivity executed by the robotic system. Each behavior is endowed

with a perceptual schema that monitors the operative and environmental state by reading sen-

sors or variables, and a motor schema providing commands for the robot actuators or internal

updates of the robot state. Only enabled behaviors (along with all the ancestors in WM) can

run their motor schemata, while disabled behaviors can only monitor sensors and variables.

For each concrete behavior, the activation value is exploited for contention scheduling (see

below) but also to regulate a monitoring mechanism: the higher the activation, the higher

the resolution/frequency at which the behavior is monitored and controlled. Therefore, mul-

tiple behaviors can be active and enabled, with different sampling rates depending on their

contextual relevance (Broquère et al., 2014).

2.6. Contentions

Multiple tasks can be concurrently executed, hence several behaviors can compete to

acquire shared resources generating conflicts. Contentions are solved by exploiting activations

and attention mechanisms: The most activated behaviors are selected following a winner-

takes-all approach. The activation values of abstract and concrete nodes in WM are online

regulated by top-down and bottom-up stimuli. Intuitively, bottom-up stimuli emphasize con-

crete nodes of the hierarchy that are more accessible or attractive for the robot. For example,

nodes associated with the objects glass can be stimulated by the glass proximity. On the other

hand, top-down regulations affect nodes at all levels of abstraction and are propagated through

the WM hierarchy (e.g., take(cof f ee) arouses goto(cof f ee) and pickup(cof f ee)). To allow

such propagation of activations, each edge (i, j) ∈ E of the WM structure is associated with a

weight wi, j that regulates the intensity of the attentional influence from the upper node i to the

subnode j (i = j is used to weight the bottom-up influence for i). The overall emphasis value

e j associated with each node j in the WM is obtained from the weighted sum of the contri-

butions ci combining top-down and bottom-up influences, that is, e j =
∑

i wi, jci (see Fig. 2,

left). This hierarchical propagation can be complemented by additional attention regulation

mechanisms. In particular, we introduce a top-down mechanism (teleology) to induce the sys-

tem toward task accomplishment: for each successfully accomplished subtask (postcondition

satisfied), the parent activation value is increased by a k value (i.e., n accomplished subtasks

provide a k n increment), which is suitably weighted and propagated to the successor nodes.

For instance, in Fig. 2, two abstract nodes take(glass) and take(bott le) propagate their

values towards two conflicting concrete nodes goto(glass) and goto(bott le). In this case,

goto(glass) receives a bottom-up regulation

given by the proximity of the glass along with a top-down regulation from take(glass) (due

to the accomplished subtasks), instead goto(bott le) receives the bottom-up proximity-based

regulation only. As a result of the additional top-down contribution, goto(glass) can win the

competition even if the bottle is closer than the glass. Lateral inhibition mechanisms after

contention (Cooper & Shallice, 2000) can be introduced as well, we usually neglect them in
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Fig. 2. Conflicting tasks in WM (left) and the associated network representation (right). Concrete behaviors (dark-

gray ovals) belonging to conflicting tasks (light-gray ovals) compete for shared resources (robot actuators). Their

emphasis values (e3 and e4) are affected by object proximity (bottom-up) and (top-down) aroused by task con-

tinuation drives (teleology). In the associated network (right), b nodes are for behaviors enabled by a provided as

inputs along with regulations tel, gla, bot , emphasis values ei are the outputs.

human–robot interaction applications to keep active and enabled alternatives for rapid task

switching (Caccavale & Finzi, 2017) or plan repair (Caccavale et al., 2016).

2.7. Adaptive regulations

Given a task set allocated in WM, the weights are to be suitably regulated to trade-off flexi-

ble task switching and effective task accomplishment. For this purpose, the WM structure can

be implicitly associated with a multilayered feed-forward neural network (see Fig. 2, right),

whose nodes and edges represent, respectively, activities and hierarchical relations between

them (Caccavale & Finzi, 2019). Such implicit mapping enables us to combine neural-based

learning with symbolic activity representations (needed for task planning and flexible task

execution). The network receives as input two vectors representing the enabled activities �a

and the associated attentional influences �r (respectively, a1, . . . , a4 and tel , gla, bot in Fig. 2),

while it generates in output the activation values �e used to regulate the competitions on con-

tended variables. The weights �w are then updated exploiting a backpropagation method (see

Caccavale and Finzi (2019) for details). This way, the system can be online trained by a user

that supervises task execution and takes the robot control to adjust its behavior. In this set-

ting, the difference between the system behavior and the human correction is interpreted as

an error to be backpropagated through the task hierarchy to adapt the associated weights. Fol-

lowing this approach, each task set allocated in WM can be associated with a trained vector

�w of weights to be suitably stored and retrieved when an analogous task set is obtained again

in WM.
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Fig. 3. Example of task switching from take(ob jGreen) to take(ob jYellow). Initially (left), the robot is approach-

ing the most emphasized green object, but human pointing towards the yellow object arouses take(ob jYellow)

and induces the robot to switch task and move towards the yellow-object target (right).

3. Case studies: Collaborative task execution and incremental learning

The proposed cognitive control framework has been deployed in several real-world robotic

scenarios, where attentional regulations and flexible task execution are used to rapidly adapt

the robotic activities to environmental changes and human interventions or to incrementally

learn/refine novel tasks from human guidance and demonstrations. In the following, we dis-

cuss some case studies to highlight the main features of the system.

3.1. Flexible and collaborative execution of multiple tasks

An attention-based executive system is particularly suited for human–robot collaboration

since it naturally provides regulation mechanisms enabling smooth task switching in the pres-

ence of multiple concurrent structured tasks to be accomplished. Moreover, such mechanisms

can also be manipulated and monitored by the operator in so enabling a natural implicit inter-

action between the human and the robotic system.

We deployed and demonstrated such features in several human–robot collaboration scenar-

ios (Cacace, Caccavale, Finzi, & Lippiello, 2018; Caccavale et al., 2016; Caccavale & Finzi,

2017). For instance, Fig. 3 shows a mobile robot involved in pick carry and place tasks (e.g.,

collecting ingredients for beverage preparation) which can be influenced by human guid-

ance. In this case, activations of concrete behaviors are bottom-up affected by target proxim-

ity (e.g., activations for take(ob jGreen) inversely proportional to the object distance), while

the task structure provides top-down influences (e.g., teleology). Moreover, the robot activ-

ities are also affected by human pointing gestures, which are monitored and detected by an

activity recognition module (provided by the HRI system in Fig. 1) along with the referred

objects. Specifically, pointed targets enhance the activations of the associated behaviors in

WM (e.g., take(Yellow) aroused by human pointing in Fig. 3). This way, when multiple

tasks are allocated in WM (e.g., collect and deliver different sets of objects with different

ordering constraints), a human supervisor can smoothly induce the robot to switch from one

task to another (see Fig. 3) with intuitive and controllable guidance based on simple cueing

 17568765, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12587 by E

T
H

 Z
urich, W

iley O
nline L

ibrary on [27/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



336 R. Caccavale, A. Finzi / Topics in Cognitive Science 14 (2022)

Fig. 4. Training multiple pick-and-place tasks. The system is first trained in different simulated environments with

a variable number of objects (left) then tested on a real robot (right).

(see Caccavale & Finzi, 2017, for an empirical assessment). We believe that such manipu-

lation of the robot executive attention, which is directly enabled by a SAS-based system, is

a primitive and crucial mechanism for human–robot communication/collaboration in natu-

ral everyday scenarios. Similar mechanisms can be deployed to support a smooth interaction

during human–robot collaborative manipulation with physical interaction. For instance, in

Cacace et al. (2018), the estimated human intentions from the human–robot physical con-

tacts are exploited to online select and adjust the robotic tasks/subtasks or motions, while also

regulating the robot compliance with respect to human physical guidance.

3.2. Learning attention regulations from human guidance

In the proposed framework, for each task set in WM, the integration of top-down and

bottom-up attention regulations depends on weights to be suitably adapted to trade-off flexible

task switching and effective task accomplishment.

These regulations can be interactively trained by exploiting human demonstrations. An

exemplification of this process is provided in Fig. 4, where a mobile manipulator is tasked to

take two colored objects (red and green) and deliver them to a target location (in the right-

upper side). Since the two carrying tasks are not forced to be sequential, the system can

decide how to schedule them given bottom-up (objects proximity) and top-down (teleology)

regulations. During the execution, a human supervisor can always take the robot control to

correct the tasks execution through teleoperation. For instance, the human corrections can

induce the system to first collect the two objects together and then deliver them to the tar-

get location. In Caccavale and Finzi (2019), we show how incrementally structured mobile

manipulation activities can be trained in this manner. The trained system is then assessed

by checking correct conflict resolutions and by evaluating the overall task performance (e.g.,

delivered objects, time to deliver, etc.). However, the more complex and diverse the activ-

ities in WM are, the more difficult it is to find an adaptive regulation suitable for several

operational contexts; therefore, the approach is effective if we can keep limited task sets in

WM, each associated with its specific weight regulation. Notice that such limitation does not
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Fig. 5. Kinesthetic teaching of the water-pouring task. The human demonstration is simultaneously segmented

(S1, . . . , S5) and monitored by abstract tasks in WM (e.g., pick(bott le)). For each segment, a control model is

generated (e.g., s1(bott le)) and linked to the most emphasized lower active node in WM (e.g., pick(bott le)).

directly impair complex task execution and long-term autonomy, since task sets in WM are

not static, but continuously retrieved from LTM and allocated in WM or deallocated (e.g.,

once accomplished or in the presence of failures). In this context, the learned weight regu-

lations could be suitably stored in LTM to be retrieved (when similar sets of activities are

recognized in WM) and, in case, readjusted through additional user corrections.

3.3. Incremental teaching/learning of novel activities

Lifelong learning of incrementally complex activities is a key capability to enable long-

term robot autonomy in everyday scenarios. In this respect, attention-based task supervision

and execution provide natural and effective support to task teaching and learning from demon-

strations. This feature is illustrated in Caccavale et al. (2019), where the proposed framework

is exploited to enable kinesthetic teaching of hierarchically structured tasks. In this scenario,

the operator can physically guide a robot manipulator to demonstrate how to execute complex

operations (e.g., how to make a soluble coffee or a tea). The human demonstration is super-

vised by the attentional executive system, which tracks and monitors both the human and

the robot activities at different levels of abstraction exploiting abstract/incomplete descrip-

tions of the tasks/subtasks to be demonstrated (e.g., water pouring in Fig. 5). The human

demonstration is simultaneously segmented (S1, . . . , S5 in Fig. 5) to generate low-level con-

trol models (sensorimotor processes), which are linked to the abstract task structure, providing

them with concrete/executable primitives. During the demonstration, attention manipulation
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(object or verbal cueing) can be exploited by the human to facilitate hierarchical task moni-

toring and the match between (top-down) proposed tasks/subtasks and (bottom-up) generated

segments/models.

This process is exemplified in Fig. 5. As explained above, during the water-pouring demon-

stration, the system is already provided with an incomplete and abstract description of

the tasks/subtasks, that is, pick(bott le), pour(bott le, glass), place(bott le), which are used

to monitor the operator demonstration. On the other hand, the abstract task is not exe-

cutable since the concrete control models associated with these three abstract nodes are to

be online learned from the human guidance. During the kinesthetic demonstration, a low-

level monitoring process segments the trajectory illustrated by the human and generates

a dynamic model (Ijspeert, Nakanishi, Pastor, Hoffmann, & Schaal, 2013) for each seg-

ment (s1(bott le), . . . , gripper(open) in Fig. 5) that is linked to the abstract nodes in WM

(e.g., s1(bott le) linked to pick(bott le)). New segments are here online generated when the

robot arm enters/leaves an object proximity region (e.g., S2 starts in the bottle proximity) or

when the human commands something (e.g., S2 ends with “gripper open”), while contention

scheduling is exploited to associate such generated segments/models to the most emphasized

abstract node among the lower nodes enabled in WM. During the teaching process, the novel

concrete activities along with the associated preconditions, effects, and hierarchical relations

are also stored into the LTM, ready to be retrieved and allocated in WM. This way, the demon-

strated task can be autonomously and flexibly executed by the robotic system (e.g., during

coffee or tea making). Notice that the same abstract tasks allocated in WM to monitor the

human demonstration are also exploited for autonomous and flexible task execution. This is

a simple mirroring mechanism, which is naturally provided by a SAS-based cognitive con-

trol framework. We are currently investigating methods to simultaneously learn abstract and

concrete tasks from multiple demonstrations.

4. Related works

In the AI and robotics literature, flexible execution of complex human–robot collabora-

tive activities is usually managed exploiting integrated planning and execution frameworks,

where the human interventions are continuously aligned to the planned activities exploiting

replanning (or plan repair) cycles (Carbone et al., 2008; Karpas et al., 2015). This is a typi-

cal approach also in human-aware planning systems (de Silva et al., 2015), where structured

plans are generated for both the human and the robot agents involved in cooperative activ-

ities, and then generated again when the human behavior diverges from the expected one.

Such continuous replanning process is computationally expensive and not well legible from

the human side, since the robot motions are fragmented, while tasks are frequently interrupted

and restarted.

In contrast to these approaches, in our framework multiple competing collaborative plans

can be concurrently allocated and enabled in WM. This way, a complex task set can be mon-

itored and executed, while task switching can be smoothly affected by attention regulation

mechanisms and contention scheduling, which are also comprehensible and controllable from
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the human side. On the other hand, AI methods for task supervision, failure detection, plan

repair, etc. could also be available to enable safe and effective task execution (Caccavale et al.,

2016); for this purpose, we rely on symbolic task and action representations (e.g., HTNs; Nau

et al., 2003), which are compliant with these techniques.

As far as human–robot collaboration is concerned, attention models are usually deployed

for visual perception and exploited for implicit nonverbal communication (Breazeal, Kidd,

Thomaz, Hoffman, & Berlin, 2005; Muller & Knoll, 2009), joint attention (Scassellati, 1999),

anticipation (Hoffman & Breazeal, 2007), perspective taking (Trafton et al., 2005), active

perception (Breazeal et al., 2001; Demiris & Khadhouri, 2006), etc. In contrast, we propose

attention mechanisms for executive control, which are rarely considered in the robot literature

(Broquère et al., 2014; Garforth et al., 2006; Kawamura et al., 2008) and usually not exploited

for the orchestration of concurrent structured tasks in real-world robotics systems.

Attention-based contention scheduling has been investigated for behavior selection in

behavior-based systems (Scheutz & Andronache, 2004), more complex, hierarchical, repre-

sentations of goals are considered in Kasderidis and Taylor (2004), where several attentional

mechanisms (sensory, motor, boundary attention, etc.) are deployed in combination with het-

erogeneous attributes (commitment, engagement, emotion, etc.) for goal prioritization and

selection. Conversely, we propose to deploy a supervisory attentional system as a uniform

executive paradigm for activity orchestration.

Cognitive control mechanisms have also been proposed within the the Intelligent Soft Arm

Control (ISAC) architecture (Kawamura et al., 2008), where attention is mainly deployed to

assign priority values to orient the focus of perception. More related to our approach, a neural

SAS-based executive system for robot control in a simulated environment is proposed by Gar-

forth et al. (2006), where only simple foraging tasks are considered as a proof of concept. In

contrast, we are interested in a practical framework that can scale the complexity of real-world

robotic collaborative tasks in everyday scenarios. In this direction, we pursue a hybrid neu-

rosymbolic (d’Avila Garcez, & Lamb, 2020) approach to keep the system not only compatible

with AI planning and execution methods but also modular, extensible, and explainable for

users/developers.

Attentional processes are also crucial in the global workspace theory (GWT) paradigm,

(Baars, 1997; Franklin et al., 2014) to recruit content in the workspace. In this setting,

the integration of deep-learning attention-model (e.g., transformer networks; Chen et al.,

2021) for memory access and content retrieval is an interesting line of active research (Ben-

gio, 2019; VanRullen & Kanai, 2021). In our framework, we focus on attention mecha-

nisms for task orchestration, but analogous complementary attention-based methods could

be investigated and integrated to enable context-dependent task set recruitment (from LTM to

WM).

5. Conclusion

Executive attention mechanisms are considered crucial regulators for activity orchestra-

tion in cognitive neuroscience; however, they are usually neglected in robotic systems. In
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contrast, we believe that attention-based control provides an effective paradigm that supports

flexible orchestration of multiple concurrent structured tasks, while enabling natural human–

robot collaboration. In support of this claim, we provided an overview of a practical SAS-

inspired robotic cognitive control framework suitable for collaborative task learning and exe-

cution in realistic everyday scenarios. The system was designed to be also compatible with

external AI and robotics-based methods (i.e., task and motion planning, multimodal com-

munication, dialogue management, etc.). We illustrated the main features of the framework

and discussed case studies to highlight the relevance of attentional supervision/regulation for

orchestration of multiple tasks and smooth task switching, activity monitoring and implicit

human–robot communication, and incremental learning from demonstration. In contrast with

typical cognitive architecture approaches (Anderson et al., 1997; Franklin et al., 2014; Kawa-

mura et al., 2008; Trafton et al., 2005), where several interacting components are involved

in activity execution, we illustrated an executive framework based on restricted executive

mechanisms inspired by a SAS paradigm (i.e., structured tasks execution, activation values,

attention mechanisms, contention scheduling, etc.) and suitable for robot cognitive control.

Such mechanisms are rarely deployed for robot task orchestration, typically in combination

with multiple heterogeneous mechanisms (Kasderidis & Taylor, 2004; Kawamura et al., 2008)

or not intended for realistic robotic scenarios (Garforth et al., 2006). Moreover, the effective-

ness of the proposed paradigm and the associated processes to human–robot collaborative

task execution (Cacace et al., 2018; Caccavale & Finzi, 2017; Caccavale et al., 2016) and

learning (Caccavale & Finzi, 2019; Caccavale et al., 2019) also adds weight to claims in the

cognitive psychological literature that action schemata modulated by high level and attention-

based control mechanisms (Cooper, 2021; Cooper & Shallice, 2006) play a relevant role in

the performance of everyday activities. The proposed case studies also suggest that the SAS

paradigm not only supports flexible execution of multiple tasks but also implicit communica-

tion and incremental learning.

To further support natural human–robot collaboration during both task teaching and flexi-

ble task execution, additional and complementary attentional mechanisms could be integrated

into our framework (visual attention, joint attention, active perception, affordances, etc.). We

are particularly interested in interaction scenarios where executive attention is affected by

multimodal sources (e.g., utterance, gaze direction, gestures, physical interaction, body pos-

tures, etc.). Preliminary examples of integrated frameworks for multimodal attention-based

interaction can be found in Caccavale et al. (2016). We are also investigating the effec-

tiveness of the described attention-based executive framework for long-term autonomy in

complex everyday scenarios. In this context, the aim is to further develop incremental

task teaching and adaptation, from primitive to complex tasks. In Caccavale et al. (2019),

we assumed already available abstract task descriptions in LTM and considered the prob-

lem of grounding them to concrete sensorimotor processes through human demonstrations,

the approach can be extended to enable hierarchical tasks learning. In this direction, AI

methods for symbolic task learning (Zhuo, Muñoz-Avila, & Yang, 2014) could be inte-

grated in a SAS-based framework to simultaneously learn hierarchical tasks, sensorimotor

processes, and attention regulations from human demonstrations. Notice also that we mainly

considered learning from human demonstration methods, which are particularly suited for
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collaborative robotic settings, but unsupervised learning techniques (e.g., attention-based

deep reinforcement learning; Mott, Zoran, Chrzanowski, Wierstra, & Rezende, 2019) could

also be integrated to enable task refinement by robot self-practice. Incremental learning pro-

cesses in long-term autonomy scenarios may continuously generate novel, refined, and incre-

mentally structured/specialized task descriptions to be stored in LTM along with the asso-

ciated regulations. In this setting, effective mechanisms are needed to retrieve and reuse

learned tasks depending on the operational and the environmental context. For this purpose,

we are currently investigating how to extend the framework with attention-based task recruit-

ing approaches inspired by the GWT framework (Franklin et al., 2014; VanRullen & Kanai,

2021).
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