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a b s t r a c t

Task and motion planning in robotics are typically addressed by separated intertwined methods.
Task planners generate abstract high-level actions to be executed, while motion planners provide the
associated discrete movements in the configuration space satisfying kinodynamic constraints. However,
these two planning processes are strictly dependent, therefore the problem of combining task and
motion planning with a uniform approach is very relevant. In this work, we tackle this issue by
proposing a RRT-based method that addresses combined task and motion planning. Our approach
relies on a combined metric space where both symbolic (task) and sub-symbolic (motion) spaces are
represented. The associated notion of distance is then exploited by a RRT-based planner to generate
a plan that includes both symbolic actions and feasible movements in the configuration space. The
proposed method is assessed in several case studies provided by a real-world hospital logistic scenario,
where an omni-directional mobile robot is involved in navigation and transportation tasks.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Combining task and motion planning is a crucial issue in
robotics. These two planning problems are usually treated in a
separated manner to exploit the complementary characteristics
of the two planning methods. While task planners typically work
with abstract specifications of the planning problem, searching
for plans of symbolic actions, motion planners generates plans
of discrete motions in the configuration space, satisfying the
associated motion constraints. Since these algorithms work at
different levels of abstraction, a typical approach is to first address
the task planning problem and then to deploy the motion planner
to find the actual implementation of the abstract plan in the con-
figuration space. However, when the mission is complex and/or
the environment is highly constrained (navigation in cluttered
environments, manipulation problems, etc.), such decoupled ap-
proach is no longer effective. In these settings, since symbolic and
motions constraints can be strictly intertwined, a symbolic plan
generated by the task planner can be easily not executable in the
configuration space. In these circumstances, a unified approach
to task and motion planning is needed to address both symbolic
and motion constraints [1].

Several approaches have been proposed in the literature to ad-
dress combined task and motion planning [2–13]. Following [9],

∗ Corresponding author.

E-mail addresses: riccardo.caccavale@unina.it (R. Caccavale),

alberto.finzi@unina.it (A. Finzi).

we can distinguish approaches where: motion planning is pri-
mary, but guided by the task planning algorithm [6,8,10,11];
task planning is primary, while motion planning is selectively in-
voked [7]; task planning and motion planning are interleaved and
a generated task plan is incrementally expanded by the motion
planner, which simultaneously checks whether each symbolic
action is executable in the configuration space [2,3,12,13].

In this work, we explore a novel approach in which task and
motion planning problems are handled in a uniform manner by a
sampling-based planning algorithm. Specifically, we propose and
investigate the effectiveness of a novel method which fully relies
on an extension of Rapidly-exploring Random Trees (RRTs) that
works on a combined symbolic and sub-symbolic space.

RRTs are extensively exploited algorithms for motion planning
in mobile and manipulation robotics [14] since they permit an
efficient search in non convex, high-dimensional spaces. On the
other hand, the deployment of these methods for high-level task
planning has been only partially investigated in the literature.
RRTs algorithms applied to discrete spaces have been proposed
and explored by [15], however the problem of symbolic task
planning was not considered. As far as symbolic planning is con-
cerned, an interesting approach is provided by [16], where RRTs
are adapted to solve AI planning problems encoded in the STRIPS
(Stanford Research Institute Problem Solver) representation [17];
on the other hand, this work does not address the combination
of task and motion planning. An embedding of the symbolic state
into the continuous space is proposed in [10] to enable sampling-
based planning methods extended to symbolic, geometric, and
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kinematic constraints. Here, combined task and motion planning
is addressed, but task planning is primary since a task plan-
ning heuristic is exploited as a long-horizon symbolic guidance
through the search space. Another relevant approach is proposed
by [11], where RRTs are deployed for motion planning in the
configuration space, while symbolic task planning is exploited to
support motion planning by providing actions and regions of the
continuous space that the sampling-based motion planner can
further explore to advance its search. In this case, symbolic and
motion planning processes are associated with different search
strategies and an external black-box symbolic planner is invoked
to compute an action plan.

In this paper, we propose and investigate a different approach
to combined task and motion planning, which directly applies
the RRT-based algorithm to an extended search space which
combines the configuration space and the symbolic state space.
Our aim is to explore the extent to which a direct deployment
of a basic RRT sampling-based search is feasible and effective in
this extended space. Since the RRT needs a metric space to be
sampled, we firstly introduce a distance measure suitable for an
extended state space that combines configurations and symbolic
states; we then deploy this distance to guide the expansion of the
RRT in the extended metric state.

Notice that in this work, for the sake of simplicity, we deliber-
ately deploy a vanilla version of the RRT search [14] to assess the
sampling-based search mechanism, without the support of other
optimizations (e.g., [18]). We detail the approach and discuss
its feasibility and scalability in real-world robotic case studies
provided by a hospital logistic scenario. We consider incremen-
tally complex pick, carry, and place tasks in both uncluttered and
cluttered environments. The results collected with the proposed
pilot study suggest that the approach is feasible in realistic sce-
narios, while its effectiveness is more emphasized in complex and
cluttered environments.

This work presents an extended and further detailed version
of the framework introduced in [19] at the IEEE European Confer-
ence on Mobile Robots (ECMR 2021). In this version we provided
a more comprehensive description and explanation of the overall
framework; we extended the discussion of related literature; we
extended the experimental evaluation and discussion consider-
ing additional scenarios where the performance of the proposed
system is compared with respect to a baseline approach with
decoupled task and motion planning.

2. Related works

Combined task and motion planning have been explored from
different perspectives [9]. From the motion planning side, task
planning has been deployed to support the motion planning
search. For instance, the SamplSGD framework [11] exploits sym-
bolic action planning to find discrete actions and regions of the
continuous space that a sampling-based motion planner can se-
lectively explore to generate feasible motion plans. A sampling-
based approach is also used in ASyMov [6]. In this case, cost func-
tions are deployed to decide whether to expand the roadmaps
of already included actions or to call a task planner to add new
actions starting new roadmaps. Following a different approach,
in [5] a motion planner is deployed to generate a tree in the con-
figuration space along with an associated task planning domain.
The latter is exploited to generate a symbolic plan, which is then
converted into the configuration space. In [8], the authors ad-
dress multi-modal planning considering both configurations and
modes. In this case, the authors propose a hierarchical algorithm
along with a bidirectional RRT-based search for the combined
space. A multi-modal sampling-based method for combined task
and motion planning is also proposed by [20], where an extension

of dRRT [21] is deployed to explore the composite space of multi-
arm task and motion planning problem. In other works task
planning is primary, while motion planning is selectively invoked
to assess geometric and dynamic constraints. In this direction,
in [7] the task planner operates in an abstracted state space,
while a suitable interface is introduced to communicate to the
task level the geometric constraints found in the continuous state.
Geometric backtracking for task and motion planning are inves-
tigated by [9] comparing two approaches: heuristics based on
geometric conditions to guide the search; geometric constraints
to prune the search space. Along this lines, PDDL extensions
with semantic attachments enabling specialized motion method
have been proposed and investigated by [22]. Combined task and
motion planning is also achieved through the interleaved task and
motion planners [2,3,12,13]. For instance, in Erdem et al. [3] the
task planner is used to guide a motion planner that attempts to
generate a continuous motion for each robot. Another iterative
approach is provided by [2], here incremental constraint solving
is exploited to iteratively provide motion feasibility information
into the task planner. In the framework by [12], an interface
is proposed to enable an effective interaction between task and
motion planners. An interface-based approach is also proposed
by [13], in this case the aim is to provide a planner-independent
layer to connect task and motion planning.

Differently from these approaches, our method relies on a
unified sampling-based exploration of an extended space that
combines continuous and abstract states. Closely related to our
work, a sampling-based method to search in the symbolic space
has been proposed by [16]. Analogously to our approach, here,
a STRIPS-like planning domain representation is adopted, while
a distance measure for the symbolic states is introduced and
exploited by an RRT. However, this method is only applied at
the task level, while combined task and motion planning has
not been tackled. Sampling-based planning methods extended to
symbolic representations and motion constraints are proposed
in [10]. In this case, the symbolic planning problem is embedded
into the continuous space, while suitable functions are introduced
to guide the motion planner towards regions of the configuration
space where symbolic actions can be executed. In this space a
motion planner is deployed to generate a motion plan addressing
all the embedded constraints. In contrast, we define a combined
space associated with a novel measure of combined distance that
enables us to generate both the symbolic and the motion plan.
Related with our approach, multi-modal methods [8,20] propose
sampling-based search in a combined task and motion space,
however, symbolic representations of the planning domain are
not employed.

3. RRT-based task and motion planning

In this section, we introduce our Task and Motion RRT planner
(TM-RRT) obtained as an extended version of a simple RRT-
based planner. First of all, we define our combined task and
motion planning problem, which can be defined by the tuple
(C, S,M, A, qinit , sinit , sgoal,G), where C ⊆ R

n is the n-dimensional
configuration space of the robot, S is the symbolic state space,
M and A are sets of motions and symbolic actions respectively,
qinit ∈ C and sinit ∈ S are the initial configuration and initial
symbolic state, and sgoal ∈ S is the symbolic goal state. Each state
in the symbolic space S is implicitly represented by means of
a finite set of ground predicates in a set P representing all the
possible properties that can hold in a state (with closed-world
assumption), i.e., S = 2P . For instance, the symbolic state of a
mobile robot involved in pick-and-place tasks can be symbolically
described by the predicates at(Pose), on(Obj, Pose), holding(Obj),
representing, respectively, the pose of the robot, the disposition
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of objects, the object held by the robot. In this setting, a symbolic
state can be described as a list of fully instantiated predicates,
e.g., at(p1), holding(obj1), on(obj2, p2), on(obj3, p3) describing a
robot in p1 holding obj1, while other objects are available in p2
and p3. Notice that, following the closed-world assumption, a
state is represented by the set of instantiated predicates that
holds, while not mentioned proprieties are assumed as negated.

In this framework, we represent motions and actions. A mo-
tion m is a n-dimensional vector of movements that linearly
drives the robot from a configuration to another. On the other
hand, an action a ∈ A is a STRIPS-like symbolic operator [17],
which is associated with preconditions pre(a), add-list and delete-
list eff (a)+, eff (a)−, specifying the transition between two sym-
bolic states (preconditions and effects are represented by sets of
ground predicates in P). For instance, the robot action pick(Obj,
Pose) of picking an object Obj from Pose can be executed (precon-
dition) if and only if the robot is close the position of the object
(pre(a) holds iff at(Pose) and on(Obj, Pose)); on the other hand, the
action positive effect is that the agent holds the object (eff (a)+ =
{holding(Obj)}), while the negative effect is that the object is not
anymore in the previous pose (eff (a)− = {on(Obj, Pose)}).

Moreover, in order to assess action accomplishment in the
configuration space, we introduce a function G : A × S → C
such that, given a symbolic action a applied in the symbolic
state s, it provides a target configuration q ∈ C representing
the configuration to be reached by the robot in order to fi-
nalize a. Such function is part of the domain specification that
can be defined using symbolic references to configurations [6,
9,13], which provide an interface between the symbolic and
the configuration space. Following this approach, target config-
urations can be obtained from referenced terms (e.g., poses)
mentioned as arguments in actions and predicates of the state.
For instance, the action pick(o1, p1) applied in the symbolic state
s = {on(o1, p1), at(p1)} can be associated with the target configu-
ration qp1 obtained from the geometric pose of a symbolic term p1
representing the location for that object (e.g., G(pick(o1, p1), s) =
qp1 ). Notice that this approach is similar to the one adopted
by [13], where predicate arguments for real values range not over
continuous values, but over finite sets of symbolic references to
configurations.

In this context, we want to find a sequence of motions and
actions that can be executed by the robot in order to reach
the desired symbolic state sgoal, starting from the initial con-
figuration qinit and the initial symbolic state sinit . To this end,
we aim at producing a list of action and motion pairs π =

⟨(a1,m1), . . . , (ak,mk)⟩, where each motion specifies a movement
to be performed in the configuration space by the robot to ac-
complish the associated action. In this setting, a plan is a list of
motions, each labeled with an action representing the symbolic
motivation for that motion.

For instance, consider a person that aims at opening a bottle of
water. At the task level, the action can be decomposed in two ac-
tions: grasp-bottle (a1) and open-bottle (a2). The first one is needed
to hold the bottle in position, while the second one permits to
remove the cap from it. On the other hand, at the motion level,
the first action can be executed by moving the left arm towards
the bottle (m1) and closing the left hand to hold it (m2), while the
second action execution is composed of a first right hand motion
towards the cap (m3) followed by another one performed to
remove it (m4). In this case, the first two motions are performed
in order to accomplish the grasp-bottle action, while the others
are needed to accomplish the open-bottle action. Therefore, in the
final plan π we will have four pairs, one for each motion, and two
for each action, that is π = ⟨(a1,m1), (a1,m2), (a2,m3), (a2,m4)⟩.
Notice that in this plan each pair represents a motion labeled
by a symbolic action (e.g., m1 and m2 are labeled by a1), hence

each symbolic action is implemented by the associated motions
(e.g., a1 is executed by the motions m1,m2). It is also worth
noticing that symbolic actions may also interleave at the motion
level (e.g., an action a1 with motions m1,m2 interleaved by the
action a2 with motions m3,m4 can be represented by a plan
⟨(a1,m1), (a2,m3), (a2,m4), (a1,m2)⟩).

3.1. An extended RRT

The RRT algorithm [14,23] is a sampling-based planning met-
hod that provides a motion plan by rapidly generating a tree
rooted at the starting configuration until the goal configuration
is reached. As previously mentioned, we introduce our approach
considering a basic version of the RRT algorithm, which will
be suitably adapted to handle both task and motion planning.
Notice that more sophisticated algorithms based on RRTs can be
similarly adapted and deployed [18,24–27].

Following the formulation by [23], the class of problems con-
sidered by RRTs can be defined by the following elements: the
state space X; the boundaries, representing initial and goal config-
urations xinit ∈ X and Xgoal ⊂ X respectively; a collision detector
D : X → {true, false} checking whether or not a state is accessible;
a set of control inputs U (motions); an incremental simulator which
predicts the state transition over a time interval given the current
state and an input; a metric ρ : X × X → [0, inf [ specifying the
distance between states.

In this section, we show how combined task and motion
planning problems can be included in this class in order to be
solved by RRT-based methods.

In order to adapt the above RRT problem formulation to our
setting, we introduce a combined state space X = C×S (i.e., con-
figurations and symbolic states) and a combined set of inputs U =
M×A (i.e., motions and actions). Starting from these sets, we can
define as boundary values xinit = (qinit , sinit ) (i.e., the combined
initial state) and Xgoal = (·, sgoal) ⊂ C × S (i.e., the combined
goal state), and a collision detection function D : C × S →
{true, false} that checks for constraints in the combined state.
In this formulation, inconsistent symbolic states can be treated
analogously to obstacles to be avoided along the path.

As for the state transition, we define an incremental simulator
such that, given a combined state x(t) = (q(t), s(t)) and a com-
bined input u(t ′) = (m(t ′), a(t ′)), with t ′ ∈ [t, t + ∆t], the new
state x(t +∆t) obtained by applying u is computed as follows:

x(t +∆t) =

{

(q(t +∆t), s(t)) if q(t ′) ̸= G(a(t ′), s(t))
(q(t +∆t), s(t +∆t)) otherwise

(1)

That is, if q is not the target configuration associated with the
symbolic action a, only the configuration q is updated by the
m motion in u, otherwise, if the target configuration has been
reached, the symbolic state s is updated as well since a has been
accomplished. In this case, the updated symbolic state is obtained
exploiting eff (a)+ and eff (a)−, i.e., s(t + ∆t) = (s(t) \ eff (a)−) ∪
eff (a)+.

In order to deploy a RRT-based algorithm in the combined
state, we have to introduce a suitable notion of distance, which
enables us to obtain metric space. We recall that a metric space
is defined by the couple (X, d), where X is a non empty set of
elements and d is a metric on X , i.e., a distance function between
any two elements in X . In our setting, X is the combined state,
while as a metric we introduce a distance du on X obtained as a
weighted sum of two distance functions: the distance dc in the
configuration space C and a distance ds on the symbolic space
S. As for dc , we assume any metric in the configuration space
C , while ds requires a non-geometric distance associated with
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Fig. 1. Example of the symmetric distances between 3 symbolic states: s1 , s2
and s3 . Here, a mobile robot can move towards different positions p1, p2, p3, p4
in order to pick, carry, and place the cart c1 .

sets of symbols. Typical symbolic distances used for sequences of

symbols are Hamming, Levenshtein distances, etc. Since we aim

at comparing symbolic states, we rely on the notion of symmetric

difference of two sets. More specifically, the distance du is defined

as follows:

du((q
′, s′), (q′′, s′′)) = wc i+ wsj (2)

where wc, ws ∈ R
+ are two positive and non-zero constant

values introduced to weight the configuration distance i and the

symbolic distance j, which are defined as follows:

i = dc(q
′, q′′) (3)

j = ds(s
′, s′′) =

= |s′ △ s′′| = |(s′ ∪ s′′) \ (s′ ∩ s′′)|
(4)

Here, the distance dc is for any distance between two configu-

rations q′ and q′′ (i.e., the one used to expand the RRT in the

configuration space), while the symbolic distance is defined as the

cardinality of the symmetric difference of the two symbolic states

s′ and s′′. Since symbolic states are represented by sets of ground

predicates, this cardinality provides a notion of proximity among

the states. An exemplification of this notion is provided in Fig. 1,

where three symbolic states s1, s2, s3 along with their distances

are illustrated.

We now can show that du is a distance in the metric space

(X, du).

Proposition 1. The function du is a distance in the metric space

(X, du).

Proof. We recall that a function d : X × X → R is a distance

in X iff (i) d(x, y) ≥ 0; (ii) d(x, y) = 0 ⇐⇒ x = y; (iii)

d(x, y) = d(y, x); (iv) d(x, y) ≤ d(x, z)+ d(y, z).

First of all, we can observe that if both dc and ds are distances

in C and S respectively, then (i), (ii), (iii), (iv) hold also for du in

C × S since du is a weighted summation of dc and ds, with non-

zero positive weights. Moreover, we have also that dc is a distance

on the configuration space by assumption. Finally, we can shown

that the cardinality of the symmetric difference satisfies all the

distance properties: (i), (ii), (iii) are trivial, while the triangular

inequality follows from sx △ sy ⊆ (sx △ sz) ∪ (sz △ sy) along

with |sx △ sy| ≤ |(sx △ sz) ∪ (sz △ sy)| and |(sx △ sz) ∪ (sz △ sy)| ≤

|(sx △ sz)| + |(sz △ sy)|. □

3.2. RRT-based task and motion planner

Given the distance measure introduced in the previous section,
we now aim at introducing a RRT algorithm that spans towards
the unified metric space (configurations and symbolic) in search
for a plan that is both collision-free and symbolically consistent
with respect to the task planning representation.

Algorithm 1 TM-RRT algorithm

1: function build_TMRRT(xinit , sgoal)
2: T ← addRRT(T , xinit )
3: while ¬ reached(T , sgoal) do
4: xrand ← random_state(T , sgoal)
5: T ← extend(T , xrand)
6: end while

7: return T

8: end function

The TM-RRT algorithm that combines task and motion plan-
ning is illustrated in Algorithm 1. It receives in input the initial
state in the combined space xinit = (qinit , sinit ) along with a
symbolic goal state sgoal and generates a RRT whose branches
are associated with task-level symbolic actions and free-obstacle
motions. The output of Algorithm 1 is the tree structure itself,
since the plan can be suitably retrieved by going backward from
the solution vertex (leaf) to the initial vertex (root). The algo-
rithm works as follows. The tree is firstly initialized to the initial
configuration (line 2) then, until the goal state sgoal is reached
(line 3), the algorithm randomly selects a combined state (line
4) and extends the tree in that direction (line 5). Finally, the tree
containing the goal state is given as output (line 7). Notice that,
in contrast with the basic version of the RRT by [14], this algo-
rithm stops when a feasible path connecting the initial and the
goal states is found. Moreover, our algorithm also incorporates
a suitable random_state function in which symbolic actions are
exploited to guide the sampling process towards the goal state.

Algorithm 2 TM-RRT random sampling

1: function random_state(T , sgoal)
2: srand ← random_sym(ps, sgoal)
3: snear ← nearest_sym(T , srand)
4: a← select_action(snear , srand)
5: qsub ← G(a, snear )
6: qrand ← random_conf(pc , qsub)
7: return (qrand, srand)
8: end function

The description of the random_state function is illustrated in
Algorithm 2. In a first phase, a symbolic state srand is drawn
from the space S (line 2). To bias this sampling towards the
goal state, we adopt a randomized choice by selecting the goal
state sgoal with probability ps along with a randomly extracted
symbolic state (i.e., a subset of P as in [16]) with probability
1−ps. The selected state srand should induce a tree expansion in its
direction. At the symbolic level, this expansion is performed by a
symbolic action. In this respect, given srand, the algorithm selects
the nearest state snear of the tree (line 3) and selects an action a
from the state snear towards srand (line 4).

In a second phase, we exploit the G function (line 5) to retrieve
the target-configuration qsub associated with the symbolic action
a executed in snear . Notice that, the qsub is here exploited as a
guidance that drives motion-level planning towards a trajectory
that accomplishes a (sub-goal accomplishment). Also in this case,
a randomized choice is introduced to obtain this drive: with prob-
ability pc the drawn configuration qrand equals the sub-goal qsub,
otherwise, with probability 1 − pc a new random configuration
is sampled, with a uniform distribution over C (line 6). Once we
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Algorithm 3 TM-RRT extension

1: function extend(T , x)
2: xnear ← nearest_neighbor(T , x)
3: (unew, xnew)← new_state(xnear , x, len)
4: if check(unew, xnew) then
5: T ← add_vertex(T , xnew)
6: T ← add_edge(xnear , xnew , unew)
7: end if

8: return T

9: end function

have both qrand and srand, a new combined sample (qrand, srand)
in the unified space is provided in output. Upon the random
selection of the state, the tree is expanded in that direction. This
process is described in Algorithm 3. Analogously to the basic
version of the RRT [23], the extend function takes as input the tree
T and the random state x. The function selects the nearest node
of the tree from the random state x according to the combined
distance du (line 2); then, a combined input unew = (m, a), with
m of maximum length len, is selected and applied to the nearest
state xnear in order to reach a new state xnew (line 3). This state
generation process is managed by the new_state function that
exploits Eq. (1) to manage the state transition, symbolic action
preconditions and effects, and the collision function D. Specif-
ically, in order to enable the expansion, the selected symbolic
action a should be executable from the current state (i.e., pre(a)
satisfied in snear ), if this is the case, the new motion m with
length len in the direction of x can be explored (while monitoring
collisions with D). Notice that, if the new configuration state
qnew is a target state for the action a (i.e., qnew = G(a, snear ))
then a symbolic state transition is performed to generate a new
symbolic state snew by applying the effects eff (a)+ and eff (a)− of
the action a to the symbolic state snear (i.e., xnew = (qnew, snew)
with snew = (snear \ eff (a)

−) ∪ eff (a)+). Otherwise, if the motion
m is not colliding and the configuration state is not terminal
(i.e., qnew ̸= G(a, snear )), only the transition in the configuration
space is performed (i.e., xnew = (qnew, snear )). On the other hand,
if the motion m leads to a collision or the selected action a is not
executable in snear , then an empty new state is returned, which
is eventually rejected by the following check function (line 4).
Finally, when a new consistent state is found the tree is expanded
by adding a new node xnew to T (line 5) and a new edge (line 6).

4. Case studies

In this section, we discuss our method in different case studies
provided by a hospital-logistic scenario (see Fig. 2 (right)), where
a mobile robot is involved in multiple pick, carry, and place
tasks. In particular, three set-ups will be considered. Firstly, we
will discuss the performance of the proposed algorithm with
respect to different combinations of parameters regulating its
functioning. We then propose two additional and incrementally
complex set-ups. The first one is uncluttered, hence almost all
symbolic actions are executable from a motion perspective. In this
case, the combined task and motion planning problem is simpli-
fied. The second set-up is cluttered, therefore the environmental
configuration often impairs the execution of the actions and
different coherent symbolic plans must be explored to generate
the associated executable motions. In the two latter cases, the
performance of the proposed planner is also compared with re-
spect to a baseline approach, where task and motion planners are
decoupled. Specifically, the aim is to compare the performance
of the proposed method with respect to a standard 2-layered
approach to task and motion planning, where a symbolic task

planner is firstly invoked to solve the high-level planning problem
generating a plan of symbolic actions while, in the second layer,
a motion planner provides collision-free paths to execute the
primitive actions of the generated task plan. To adopt a general
and basic baseline, the task plan is directly generated by a simple
Breadth-First Search (BFS) in the action space, while a basic RRT
algorithm [14] is exploited to expand primitive actions in the
configuration space.

All the experiments have been carried out in a realistic Cop-
peliaSim simulated environment of 10× 10 m, deploying a laptop
Intel i5-5200U 2.20 GHz, 8Gb ram, with a single threaded im-
plementation of the algorithm1. An example of the simulated
environment is provided in Fig. 2, where we can find a mobile
robot (gray, in simulation), two carts (cyan) and four target poses
(green squares). The robotic system is an omni-directional mobile
platform endowed with four mecanum wheels and an elevator
that allows it to go under the carts and lift them from below. We
assume the robot localized within a complete map of the envi-
ronment. The configuration of the environment (rooms, passages,
number of carts and poses) will be changed in the simulated
experiments in order to generate incrementally complex settings.

In this scenario, we assume the robot configuration space C ⊆
R

2× SO(1), hence each q ∈ C is a triple q = [x, y, θ], where x and
y are coordinates and θ is the rotation. The set A includes two
types of actions, pick(Cart, Pose) and place(Cart, Pose), while the
symbolic state is described by the predicates: free(Pose) that holds
if the Pose is free, carry(Cart) which holds if the robot is carrying
Cart , on(Cart, Pose) stating that Cart is in Pose, and carrying , that
holds if the robot is moving a cart. Both predicates and actions can
be instantiated with carts and target-poses, hence the number of
ground actions and predicates can be defined by the number of
carts/target-poses. As for the G function, it is defined exploiting
the configurations associated with the symbolic poses. Specifi-
cally, we state that G(a, s) = ref (target(a, s)), where target(a, s)
provides the symbolic target p associated with the action a in
s, while ref (p) provides the configuration qp ∈ C associated
with the symbolic term p (e.g., G(pick(cart2, p0), s) is defined by
target(pick(C, P), S) = P and ref (p0) = qp0 ).

4.1. Case 1: Parameters setting

The TM-RRT set-up depends on 5 main parameters: the prob-
abilities pc and ps (see lines 2 and 6 in Algorithm 2) that regulate
the goal-oriented sampling of the RRT, the length of the motion
segment towards the random sample len (see line 3 in Algorithm
3), and the weights wc and ws introduced to define the unified
distance du (see Eq. (2)). As a preliminary step, our aim is to assess
the performance of the planner by changing the parameters that
structurally affect the underlying metric space and the way it
is explored. In particular, as parameters we consider the ratio
between the two weights wc and ws used to define the unified
distance du along with the len expansion step of the tree. In
contrast, the probabilities pc and ps are both fixed to 0.3 in order
to compare the results with the same fixed search strategy.

In the following tests, we assume wc = 1 and ws = kwc and
the ratio k ∈ {0.1, 0.5, 1, 2, 5, 10}, and len ranging in [0.1 − 1]
with an increasing step of 0.1. The environment used for testing
is illustrated in Fig. 2 (left), where a mobile robot that can move,
pick, carry and place carts in two areas: a small room with 2
entrances and a bigger outer area. In this setting, we deploy 2
carts (cyan objects c1 and c2) and introduce 4 target poses (green
squares p1 to p4). As for the task, the goal for the robot is to
place c1 in p3 and c2 in p4. Notice that one of the carts (c1) is

1 The open-source version of the code can be downloaded from https:

//github.com/ri-caccavale/tm_rrt
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Fig. 2. Example of simulated (left) and real (right) hospital environment. In the

simulation 2 carts are deployed (c1 and c2) and one of them (c1) is blocking the

entrance (for interpretation of the references to color in this figure legend,the

reader is referred to the web version of this article).

intentionally positioned close to the bigger entrance in order to
obstruct the passage. This way, the mobile robot can still access
the room through the small entrance, but a free passage is needed
anyway to carry out the cart c2. This environment represents a
simple ‘‘trap’’ since all the plans starting with the pick(c2) action
cannot be completed with carry and place because the only exit
from the small room, available for c2, is blocked. Instead, in order
to solve the task, the robot firstly has to pick carry and place c1
from pose p1 to pose p3, then cart c2 can be moved from pose p2
to pose p4.

In this scenario, we tested the algorithm by performing 30
execution for each combination of the parameters. We also in-
troduced a time-limit of 300 seconds considering failures all the
executions exceeding this limit. For each couple of parameters
(len, k) we measured the time needed to generate the plan along
with its size (average and standard deviation) and the failure
rate. The results are illustrated in Fig. 3. It is possible to notice
that the failure rate decreases rapidly when the weight ws of the
symbolic distance becomes two or more times greater than wc . In
this respect, we can also observe that this regulation emphasizes
the symbolic component along with the guidance of the symbolic
actions towards the symbolic goal. Analogously, the planning
time also decreases with the increment of both k and len. In
contrast, the size of the plan increases with the increment of
len. This results was expected since longer paths are generally
associated to fast, but inefficient routes, while shorter paths are
more detailed but computationally expensive. On the other hand,
the plan size is still slightly decreasing with the increment of k.
These collected results suggest that settings where wc > ws are
self-defeating (higher failure rate), while the len parameter can
be regulated to trade-off between efficiency and quality of the
solution.

This preliminary analysis enabled us to select a suitable pa-
rameter regulations for the other case studies. Specifically, we
selected the set-up associated with no failures and minimal ex-
ecution time (see green line in Fig. 3), namely len = 0.9 and
k = 5.

4.2. Case 2: Straight uncluttered environments

We now consider the scalability of the proposed approach
with respect to the number of actions and ground predicates
(i.e., the size of the sets A and P). In this case study, the perfor-
mance of our TM-RRT algorithm is also compared with respect to
a 2-layered BFS+RRT baseline algorithm, where task and motion
planning are decoupled. In order to compare the approach with a
general baseline avoiding planner-specific heuristics, we deploy a
straightforward BFS algorithm to generate the task plan, while a
RRT-based algorithm generates a motion plan for each symbolic
action in the task plan. To get a comparable method, such RRT
search is the one of TM-RRT restricted to the configuration space.

Table 1

Results of Case 2 (60 runs for each setting).

Number of carts 1 2 3 4

TM-RRT

Tot. time (s)
avg 0.22 1.31 11.80 39.27

std 0.32 1.46 10.61 48.85

Length (m)
avg 12.66 32.77 55.26 80.61

std 6.64 8.51 12.07 11.88

Plan-size
avg 142 364 625 906

std 77 97 143 151

Success 100% 100% 100% 93%

BFS+RRT

Tot. time (s)
avg 0.43 2.06 7.15 29.30

std 0.78 2.74 6.13 11.14

RRT time (s)
avg 0.43 2.05 6.87 8.68

std 0.78 2.74 5.85 6.77

Length (m)
avg 11.36 38.80 62.76 89.17

std 6.38 9.23 11.82 13.02

Plan-size
avg 130 429 707 992

std 78 106 124 146

Success 100% 100% 100% 100%

As for the BFS, on the one hand, it provides symbolic plans
with minimal length, on the other hand, no heuristic is exploited
for the search, hence plan generation is not efficient. Notice,
however, that the baseline is here exploited to obtain a sort of
empirical upper-bound for the temporal performance of a task
planner. Moreover, we can estimate an empirical lower-bound
performance by disregarding task-planning time in so assuming
instantaneous task planning.

Regarding the baseline, it is worth also noticing that the two-
layered planning performance is affected by two factors: the
order in which the BFS explores the possible symbolic plans and
the timeout used by the lower-level RRT to estimate when a
target pose is unreachable. In this respect, in our tests the RRT
timeout is set to 2 seconds, while we shuffle randomly the order
of the symbolic actions before every test.

We defined a simulated environment with 2 rooms and 3
passages between rooms that are large enough to allow cart
transitions (see Fig. 4). In this scenario, the robot has to move
carts from their positions in the right-room to the fixed position
in the left-room (e.g., from p1 to p2 in Fig. 4, first on the left). We
considered 4 configurations of this scenario with an increasing
number of carts (from 1 to 4) and target-poses (from 2 to 8). The
increment of tasks/poses induces an increment of the available
ground actions and predicates as illustrated in Fig. 5.

For each setting, we performed 60 runs (240 tests in total),
measuring planning-times (in seconds), size of the plans (number
of steps), paths length (meters) and success rate (percentage of
plans generated in less than 300 seconds).

In Table 1 a comparison between our TM-RRT approach and
the BFS+RRT baseline is proposed. In particular we monitored
planning times, length of the overall solution (in meters), the
plan-size representing the number of RRT nodes in the solution
and the success rate. Moreover we also report the RRT planning
time for the baseline by disregarding the time spent by the BFS
planner from the total planning time. This additional measure
provides an insight about the baseline performance indepen-
dently from the employed symbolic search strategy.

It is possible to notice that, as long as the number of carts
increases, the performance of the baseline is slightly better in
terms of success and execution time, while it is slightly worst in
terms of length and plan-size. This is particularly relevant in the
4-carts setting, where the total time of the baseline is 25% shorter
than TM-RRT (or about 80% shorter if we assume instantaneous
task planning/replanning), with 7% increased success rate (always
successful), while the TM-RRT provides more efficient solutions
that are about 10% and 11% shorter in terms of plan-size and
length respectively.

6
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Fig. 3. Representation of the average times (seconds), plan-size (steps) and the rate of failures for each couple of parameters over 30 runs. For the next cases we

select the parameters producing no failures and minor average time (green line) (for interpretation of the references to color in this figure legend,the reader is

referred to the web version of this article).

Fig. 4. Simulated environments for each setting from 1 (left) to 4 (right) carts. In all these settings the robot carries carts from the right room to the target-poses

in the left room. There are three passages between rooms.

Fig. 5. Number of actions and ground predicates for each domain.

4.3. Case 3: Anomalous cluttered environments

In order to assess our approach in case of anomalies, we

now propose variations of the above hospital logistic scenario

where the carts configuration is intentionally designed to hinder

task execution. More specifically, we assume that the simulated

environment includes a small room, in which a variable number

of carts is positioned, and an outer area with different target po-

sitions (see Fig. 6, up). The goal is to move specific carts from the

room to the target poses in the outer area, leaving the uninvolved

carts to their current positions (see Fig. 6, down). In particular, we

propose the following 5 incrementally complex settings in this

scenario.

• Setting 1: 2 carts and 4 poses, where both carts have to be

moved from the room to the outer area.

• Setting 2: 2 carts and 4 poses, where only the inner cart c2
have to be moved from the room to the outer area.

• Setting 3: 3 carts and 6 poses, where only the middle cart

c2 have to be moved from the room to the outer area, while

the cart c3 is used as a distraction to increment the size of

the planning problem.

• Setting 4: 3 carts and 6 poses, where both the middle and

the inner carts c2 and c3 must be moved from the room to

the outer area.

• Setting 5: 3 carts and 6 poses, where only the inner cart c3
must be moved from the room to the outer area.

Notice that, in this environment, the left room is designed to
be narrow enough to allow the transportation of only one cart per
time, forcing the robot to carry outside carts in a specific order:
from the outer ones (close to the entrance of the room) to the
inner ones (far from the entrance). As a result, in order to move
outside one of the inner carts, all the outer blocking carts must
be temporarily removed from their initial position. For example,
let consider the setting 2 (Fig. 6, second from the left). Here the
goal is to move the cart c2 from the pose p2 inside the room to
the pose p8 outside. In order to free the passage for the target
cart, the robot has firstly to move the blocking cart c1 to the
neutral pose p4 and then to move it back to p1 once the target cart
is placed. This configuration is designed to stress the combined
task and motion planning approaches by providing coherent task
plans that cannot be associated to any collision-free motion plan.

The collected empirical results are illustrated in Table 2. Dif-
ferently from the previous case, as the problem complexity in-
creases, the performance of the proposed TM-RRT framework
strongly outperforms the baseline in terms of success rate and
planning time even when the BFS time is neglected, as also illus-
trated in Fig. 7. For example, in Setting 4 the proposed approach
has a 100% success rate while the baseline can rarely solve the
problemwithin the deadline (17% of runs). Additionally, in Setting
5 the baseline is always unable to solve the problem within the
deadline (0% success rate), while the proposed approach has a
success rate of 83% with an average running time of 174 sec-
onds. We can also observe that the baseline tends to generate
shorter plans in cluttered environments. In these cases, once a
geometrically feasible symbolic plan is obtained by the baseline,
short-range RRT expansions can efficiently plan the motions of
each action in the plan. In contrast, the TM-RRT planner exploits
long-range RRT expansions in the combined space, hence the
generated solutions can be less efficient when the combined
planning problem is more complex.

4.4. Discussion

In the previous sections, two different incrementally complex
cases studies have been proposed to illustrate the feasibility of
our approach and compare its performance with respect to a

7
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Fig. 6. Simulated environments for each setting from 1 (left) to 5 (right), showing the initial states (up) and the goal states (down). In all these settings the robot

carries carts from the right room to the target-poses on the left. In order to carry the inner carts, the outer carts must be removed.

Table 2

Results of Case 3 (60 runs for each setting).

Test id 1 2 3 4 5

TM-RRT

Tot. time (s)
avg 11.45 24.29 17.95 87.60 174.09

std 28.50 31.90 15.69 49.29 66.36

Length (m)
avg 54.39 81.43 76.52 157.05 171.25

std 5.16 7.18 12.85 24.50 21.88

Plan-size
avg 662 1009 953 1959 2137

std 97 137 167 295 291

Success 100% 100% 100% 100% 83%

BFS+RRT

Tot. time (s)
avg 8.61 46.46 89.15 132.66 N/A

std 10.41 35.09 76.25 7.07 N/A

RRT time (s)
avg 8.61 46.43 88.62 130.64 N/A

std 10.40 35.07 75.71 7.03 N/A

Length (m)
avg 52.62 77.71 73.69 122.06 N/A

std 3.37 4.41 8.08 8.51 N/A

Plan-size
avg 615 919 874 1423 N/A

std 56 75 108 70 N/A

Success 100% 100% 80% 17% 0%

simple baseline method where task and motion planning are
decoupled. In this respect, the benefit of the proposed TM-RRT
algorithm with respect to the 2-layered baseline emerges as
the environment becomes more cluttered and anomalous. As
expected, if the environment is mainly uncluttered (case 2), gen-
erated symbolic plans are hardly impaired by physical obstacles,
hence, decoupled task and motion planning can be very efficient,
while the advantage of our combined approach becomes less
evident. Notice however that in this paper we proposed a basic
version of the algorithm to show the feasibility of the approach,
in order to improve its performance more sophisticated RRT-
based search strategies can be deployed along with more refined
implementation of the algorithm. On the other hand, in complex
and cluttered environments (case 3) where coherent task plans
frequently fail kinodynamic constraints check, the combined ap-
proach proposed in this paper starts to show its potential. This
is particularly evident in Fig. 7, where the time performance
of our approach outperforms the proposed baseline even when
we assume an high-level task planner capable of instantaneous
generation of minimal plans.

5. Conclusions

We presented a sampling-based approach to combined task
and motion planning that relies on RRTs. While RRT-based meth-
ods are widely exploited to efficiently solve motion planning
problems in high-dimensional spaces, their deployment for sym-
bolic task planning problems has been partially investigated. In
this work, we addressed this issue by proposing a RRT-based algo-
rithm suitable for searching task and motion plans in an extended

Fig. 7. Comparison between the TM-RRT total planning time and the planning

time of the baseline excluding the BFS. Unsuccessful runs are included with a

penalty of 300 seconds (time limit for each run).

search space which combines configuration states and symbolic
states. This extended state space is obtained by introducing an
extended metric space associated with a distance measure that
combines a distance in the configuration space and distance on
the symbolic state. Such extended notion of distance enabled us
to deploy a basic version of the RRT-based search on the extended
metric space to generate an executable combined plan including
both symbolic actions and the associated motions.

We detailed the overall approach and discussed its feasibility
and scalability in incrementally complex case studies provided
by a real-world hospital logistic scenario that involves an omni-
directional mobile robot assigned to multiple pick, carry and place
tasks. In these contexts, we deployed the proposed method in
both clutter and uncluttered environments comparing the per-
formance of the approach with respect to a baseline algorithm
where task and motion planning are decoupled. Despite the sim-
plicity of the proposed RRT algorithm, the collected empirical
results show that the approach is feasible and effective in realistic
scenarios with typical mobile robotics tasks. The comparison
with respect to the proposed baseline – where task and motion
planning are decoupled – suggests that the benefit of the com-
bined approach is emphasized in complex and cluttered cases,
where the configuration of the environment hinders coherent
task plans from a motion perspective. On the other hand, it is
worth noticing that in this work we deployed a basic version
of the RRT algorithm. Our aim was to present the overall ap-
proach in clear and simple setting and show its feasibility and
scalability in typical navigation and logistic tasks. In order to
demonstrate the approach in its full potential more sophisticated
versions of the RRT algorithm can be deployed, while different
notions of symbolic distance may be tested and compared. In
particular, as a future work, we plan to study the performance
of refined RRT algorithms in more complex domains, where not
only navigation and transportation activities are considered, but
also manipulation and mobile-manipulation tasks.
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