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Abstract

In this work, we consider a scenario in which a human operator physically interacts with a collaborative robot (CoBot) to

perform shared and structured tasks. We assume that collaborative operations are formulated as hierarchical task networks to

be interactively executed exploiting the human physical guidance. In this scenario, the human interventions are continuously

interpreted by the robotic system in order to infer whether the human guidance is aligned or not with respect to the planned

activities. The interpreted human interventions are also exploited by the robotic system to on-line adapt its cooperative

behavior during the execution of the shared plan. Depending on the estimated operator intentions, the robotic system can

adjust tasks or motions, while regulating the robot compliance with respect to the co-worker physical guidance. We describe

the overall framework illustrating the architecture and its components. The proposed approach is demonstrated in a testing

scenario consisting of a human operator that interacts with the Kuka LBR iiwa manipulator in order to perform a collaborative

task. The collected results show the effectiveness of the proposed approach.

Keywords Human–robot collaboration · Physical human–robot interaction · Collaborative task execution · Human intention

estimation

Introduction

Collaborative robotic systems (CoBots) enable humans and

robots to safely work in close proximity during the execution

of shared tasks (Corrales et al., 2012) merging their com-

plementary abilities (Romero et al., 2016). Depending on

the application domain, human-robot collaboration (HRC)

may require both cognitive and physical interaction, from

coordinated execution of independent or sequential activities

to physical and responsive collaboration in co-manipulation

operations. While collaborative robotic platforms ensuring

safe and compliant physical human-robot interaction are
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spreading in service robotics applications (De Santis et al.,

2007), the collaborative execution of structured collaborative

tasks still poses relevant research challenges (Johannsmeier

& Haddadin, 2017). In these settings, activities of humans

and robots should be monitored, coordinated, and suitably

orchestrated with respect to the task and the human guidance.

An efficient and fluent collaboration demands operators and

CoBots to continuously estimate their reciprocal intentions

to decide whether to commit to shared tasks and subtasks,

when to switch towards different targets, or how to regulate

compliant interactions during co-manipulation. These issues

are particularly relevant in industrial scenarios, where tasks

are usually well defined and explicitly formalized (Vernon &

Vincze, 2016), while their execution should be continuously

and fluently adjusted to the human activities and interven-

tions in a shared workspace.

In this work, we address these issues considering a sce-

nario in which a human operator interacts with a lightweight

robotic manipulator through physical interaction in order to

accomplish hierarchically structured collaborative activities.

During task execution, human interventions can be associ-

ated with different purposes, e.g., lead the robot, slightly

adjust its motion, change the target of the actions, speed
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up the execution, or use the manipulator as a passive tool.

The intentions conveyed with these physical inputs should be

continuously interpreted with respect to the planned activi-

ties and motions, while the robot behavior should be adapted

accordingly. When the human physical guidance is assessed

as aligned with respect to the planned activities, these are

maintained along with trajectories and targets. Otherwise,

depending on the assessment of the operator’s aims, the

robotic system may switch tasks, change targets, adjust tra-

jectories, while suitably regulating the robot’s compliance

with respect to human guidance.

This fluent and direct interaction between human workers

and CoBots should be associated with a flexible execution of

collaborative tasks, which needs to be continuously adapted

at different levels of abstraction. Different methods have

been proposed in the robotics literature to enable collabora-

tive plan execution, the dominant paradigm relies on activity

replanning when the human behavior diverges from the one

planned (Karpas et al., 2015; Carbone et al., 2008; Shah et

al., 2011; Lallement et al., 2014). On the other hand, con-

tinuous replanning is usually computationally expensive and

can affect the naturalness and effectiveness of the interaction,

which is crucial when humans and robots work in close prox-

imity with frequent physical contacts. In order to harmonize

flexible task execution and fluent interaction with humans,

we leverage the framework proposed in Caccavale and Finzi

(2017); Caccavale et al. (2019); Caccavale and Finzi (2019,

2022), which exploits supervisory attention and contention

scheduling (Norman & Shallice, 1986; Cooper & Shallice,

2006) to monitor human behaviors and suitably orchestrate

multiple hierarchically structured tasks with respect to the

interpreted human interventions. In this setting, supervisory

attention permits the smooth integration of autonomous guid-

ance and human guidance through top-down and bottom-up

regulations, in so enabling flexible, adaptive, and interactive

execution of collaborative plans.

Collaborative task adaptation occurs while simultane-

ously interpreting the human interventions with respect to

the activities proposed by the flexible plan. Depending on

the operational state and the environmental stimuli, the

supervisory system enables possible subtasks, targets and

trajectories, which are continuously evaluated by intention

recognition processes. Specifically, in the proposed frame-

work each possible trajectory is assessed by a Long Short

Memory Network (LSTM) that, upon receiving as input the

robot motion and the operator contact forces, infers the inten-

tion of the operator to follow/contrast the manipulator motion

towards a target point, deviate from the latter, or use the robot

manipulator in direct hand-guided control to prepare other

activities. In this scenario, when the human interventions

and the current plan targets are aligned, the robotic system

can keep executing the current plan, while suitably adjust-

ing its motion trajectory following the corrections provided

by the human. Otherwise, different targets, trajectories, and

subtasks should be selected to adjust the estimated human

indications with respect to the activities enabled by the col-

laborative plan. When the human guidance remains unclear

in the context of the task, the robotic system should remain

passive and fully compliant with the human guidance.

In order to demonstrate the proposed framework, we

designed an experimental setup inspired by an industrial

scenario, where a human operator cooperates with a Kuka

LBR iiwa robot for the coordinated execution of multiple

tapping operations in a shared workspace. In this scenario,

we proposed a pilot study to evaluate the users and system

performance in different settings (passive, guided, proactive)

considering both quantitative (effort and execution time) and

qualitative (questionnaire) assessments. The collected results

show the advantage of the proposed assisted modalities with

respect to the passive one. Interestingly, the guided setting

emerges as the preferred mode despite the advantage of the

proactive mode in terms of physical effort and execution time.

In summary, in this manuscript we propose a novel human-

robot collaboration framework which seamlessly combines

human intention interpretation and activity orchestration

during physical interaction for adaptive execution of struc-

tured collaborative tasks. The proposed system integrates and

develops different approaches to collaborative task execution

and human intention recognition (Cacace et al., 2019, 2018).

The LSTM-based intention recognition method proposed in

this work extends the contact force classification technique

introduced in Cacace et al. (2019). While the previous method

is reactive and provides instantaneous intention classification

from current features, in the novel approach the sequence of

past interactions are exploited to assess the human intent dur-

ing task execution. A preliminary approach to collaborative

execution of structured co-manipulation tasks is proposed

in Cacace et al. (2018), where the human physical interven-

tions are interpreted in the context of hierarchically structured

tasks exploiting simple disambiguation and task switching

policies, which do not involve attention-based influences.

In contrast, in this work attention regulation mechanisms

and intention recognition processes are fully integrated to

assess human intentions and to smoothly regulate the compli-

ant execution of collaborative activities at different levels of

abstraction. In the extended framework, we can define differ-

ent interaction modes which are then tested and compared in

an experimental setup. Such assessment of the system along

with the enabled interaction modes is another original con-

tribution of this work.

The remainder of this paper is organized as follows. In

Related works section, a brief overview of related works

is presented, in Collaborative human–robot manipulation

section the overall system is described presenting the archi-

tecture and the associated components. Operator intention

estimation section details the human intention estimation
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process. An experimental case study is proposed and dis-

cussed in Experiments and results section. Finally, the

conclusion provides a summary of the proposed results along

with some lines of future research.

Related works

In the human-robot interaction literature, different frame-

works have been proposed to support human-aware planning

and collaborative plan execution (Karpas et al., 2015; Car-

bone et al., 2008; Shah et al., 2011; Lallement et al., 2014;

Clodic et al., 2008; Caccavale & Finzi, 2017; Caccavale et

al., 2016; Sisbot et al., 2007), in our work, we focus on

physical human-robot interaction for the collaborative exe-

cution of hierarchically structured tasks. In this setting, the

human physical guidance and the plan guidance should be

strictly integrated in order to enable an effective and fluent

human-robot collaboration. Related to the scenario consid-

ered in this work, in Johannsmeier and Haddadin (2017)

the authors propose a framework for human-robot collabo-

rative execution of industrial assembly processes. However,

in this case, the main focus is on the allocation and coor-

dination of human-robot activities, while we are concerned

with natural and compliant human-robot collaboration dur-

ing the execution of a shared work plan. In this respect,

we propose an approach to combine plan and human guid-

ance by means of a continuous interpretation of the human

physical interventions during the interactive execution of a

task. Intention estimation is considered as a crucial issue

for natural human-robot collaboration in a shared workspace

(Hoffman & Breazeal, 2004, 2007). Different approaches

have been proposed in the robotics literature to integrate

physical interaction interpretation with adaptive and compli-

ant control. For instance, in Peternel et al. (2016), the authors

present a method in which the robot behavior is regulated

based on the estimated human fatigue, but operators’ trajec-

tories and targets are not inferred. Instead, in Nicolis et al.

(2018) a proactive system assisting the human operator dur-

ing path navigation is enabled by predicting and classifying

human-robot cooperative motions, given a set of predefined

goals and data of human movements. Co-manipulation with

multiple virtual guides is addressed in Raiola et al. (2015);

here the authors estimate the most likely workspace trajec-

tories and locations using learned Gaussian mixture to guide

the user during the execution of the shared pick-and-place

tasks. Differently from these approaches, in our framework,

the estimation of the operator intentions is blended with

structured task orchestration mechanisms and exploited at

different levels of abstraction to support trajectory, target,

and task/subtask selection. Another related approach can

be found in Park et al. (2019), where intention and motion

prediction methods support adaptive human aware motion

Fig. 1 The system architecture is structured in two main layers. The

high-level control system manages and supervises task generation and

collaborative task execution; the low-level control system enables com-

pliant execution of primitive operations

planning. In this case, analogously to our approach, an inte-

grated architecture that combines task and motion planning

with intention assessment is proposed, however, physical

human guidance and co-manipulation tasks are not con-

sidered. Other related, but complementary, works concern

compliant control methods supporting physical human-robot

collaboration. Among them, starting from the prior works

by Colgate and Hogan (1989, 1988), admittance controllers

are traditionally adopted for this scope. In this context, the

regulation of the damping of the admittance controller can

be online adapted to increase the effectiveness of the co-

manipulation system (Grafakos et al., 2016; Cacace et al.,

2019; Cacace et al., 2019). In this work, we adopt a classi-

cal admittance control schema to enable compliant physical

interaction during the collaborative execution of structured

tasks.

Collaborative human–robot manipulation

In this section, we describe the human-robot collaborative

framework presenting the overall architecture along with its

main components.

123



3056 Journal of Intelligent Manufacturing (2023) 34:3053–3067

The collaborative system is structured in two main control

layers (see Fig. 1) working at different levels of abstraction.

The High-Level Control System (HLC) is a deliberative layer

responsible for task generation, decomposition, orchestra-

tion, and interaction. The Low-Level Control System (LLC)

is concerned with the actual execution of the primitive oper-

ations selected by the HLC while maintaining the robotic

system compliant with respect to the human interventions.

The Executive System is an HLC module that man-

ages the orchestration of multiple collaborative tasks taking

into account both the environmental changes and human

activities. During task execution, the human operator can

physically interact with the CoBot and these interventions

(force/position feedback) are simultaneously interpreted at

the different layers of the architecture. Depending on the

task, the environmental context, and the human interventions,

the Executive System (top-down) proposes a set of primitive

operations/processes (Behaviors) that compete for the exe-

cution (Contention). Each proposed behavior is associated

with a target position (Target) and an activation value, the

latter representing an attentional weight, which summarizes

the relevance of that activities given the current execution

state. The Target estimation module generates a trajectory

(Trajectory Planner) for each proposed target and assesses it

(Intention Estimation) considering the current human guid-

ance in order to estimate the most aligned with respect to

the human interventions. The classification results (Inten-

tions), along with the associated attention weights, are then

exploited to influence behavior selection (Contention) with

the associated target position for the CoBot. Finally, the LLC

implements a Shared Controller aimed at mixing the inputs

generated by the human operator with the ones needed to

perform robot motion (Shared force). An Admittance Con-

troller integrates the human and the robot guidance. In the

following sections, we further detail the Executive System,

the Target Estimation process, and the Low-Level Control

System.

Executive system

The Executive System is responsible for task retrieving,

decomposition, monitoring, orchestration, and regulation.

Specifically, we rely on the supervisory attention framework

proposed in Caccavale and Finzi (2015); Cacace et al. (2018);

Caccavale et al. (2019) for human-robot collaboration. In this

setting, the executive system is decomposed into an Atten-

tional Executive System and an Attentional Behavior-based

System. The first one manages the execution of hierarchically

structured tasks along with the associated activations (top-

down attentional regulations); the latter collects the active

robot processes (behaviors), each associated with an acti-

vation value (obtained as a combination of top-down and

bottom-up attentional regulations).

Fig. 2 The executive system manages the execution of multiple hierar-

chically structured tasks

A representation of the Executive System is proposed

in Fig. 2, where we can highlight three main components:

a Long Term Memory (LTM), a Working Memory (WM),

and a Behavior-based System (BS). The LTM collects the

system procedural knowledge, i.e., the specification of the

tasks available to the robot. A task can be either abstract

(to be further decomposed) or concrete (a real sensorimo-

tor process). Each task is defined in the LTM by a predicate

schema(m, l, p), where m is the name of the task, l is a list

of mi subtasks along with associated enabling conditions ri

(releasers), i.e. l = 〈(m1, r1), . . . , (mn, rn)〉, while p is a

postcondition used to check task accomplishment.

The WM is a data structure that collects hierarchically

decomposed tasks instantiated and allocated for execution.

The task set in WM along with the associated state vari-

ables characterizes the current execution state of the system.

The WM is represented by an annotated rooted directed

graph (r , B, E), whose nodes in B represent allocated

tasks/subtasks, E are parental relations among subtasks,

while r ∈ B is the root process that manages the WM

structure. Each node b ∈ B is represented as a 5-tuple

(mb, rb, pb, xb, μb), where mb is the name of the allocated

task, rb and pb represent the task precondition and postcon-

dition respectively, xb is the set of sub-behaviors generated

by mb, while μb is an activation value assigned to the task.

Leaves in the WM structure correspond to attentional behav-

iors devoted to the execution of sensorimotor processes.

The BS collects all the allocated, active, and concrete

behaviors which compete for the execution. Behaviors can

be marked as enabled, if the associated precondition in WM
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along with the ancestors’ preconditions are satisfied, dis-

abled otherwise. An enabled behavior is accomplished if

its postcondition is satisfied. Enabled behaviors which are

not accomplished can be dispatched and executed by the

executive system once the associated resources are allocated

(actuators, input/output devices, control variables, etc.).

Since multiple behaviors can be active at the same time,

they may conflict in accessing non-shareable resources.

We rely on contention scheduling mechanism (Norman &

Shallice, 1986; Cooper & Shallice, 2000) to regulate this

competition. For this purpose, we exploit the behaviors’

activation values. When a conflict arises, following a winner-

takes-all approach, the behavior associated with a higher

activation value is selected for exclusive access to a con-

tended resource.

In WM, the activation value of a node is given by the

weighted sum of all contributions for that node:

μb =
∑

i

wi,bci,b, (1)

where contributions ci,b can be either inherited from the con-

nected nodes (with i �= b) in the WM structure (top-down) or

generated by the node itself (i = b) from external or internal

stimuli (bottom-up), while wi,b are the contribution-specific

weights. This way, given a shared resource or variable v and

the set of competing behaviors B(v) for that variable, the

behavior acquiring v is

bwin = arg maxb∈B(v)(μb). (2)

Overall, the executive system works as follows: when

a new task is allocated in the WM for the execution, the

associated schemata are recursively retrieved from the LTM

and allocated into the WM until primitive sensorimotor pro-

cesses. Preconditions and postconditions associated with

allocated tasks are continuously monitored by the executive

system in order to establish the set of subtasks that are active

and enabled in the current operative context. The behaviors

belonging to the enabled subtasks are then associated with

specific activation values, which are used to regulate their

competition in case of conflicts. This induces soft scheduling

where the most emphasized behaviors (i.e., the one’s better

fitting the executive context) are prioritized. For instance, let

assume a cooperative task where a robotic arm is tasked to

pick two objects from a table and to put them into a basket

following the human physical guidance. Assuming the two

tasks enabled (i.e., both preconditions are satisfied and the

tasks are not yet accomplished), in the absence of human

interaction, the robot may be attracted by the nearest object

on the table due to its better accessibility (i.e., bottom-up

stimulated by object proximity). However, during the move-

ment towards the proximal target, the operator can physically

interact with the robotic arm, pushing it toward the second

(less accessible) object. In this case, the human intervention

would elicit an additional activation influence inducing the

robot to switch towards the intended target. This mechanism

is further detailed below.

Classification and regulations

We exploit object accessibility, task-based constraints, and

human intention recognition to suitably single out, among

the allocated tasks, the ones consistent with respect to the

executive context and the user interventions. For this purpose,

we distinguish the following types of influences to activations

of the nodes in WM:

– Task-based influence (ti ), which is top-down provided

to node i by the allocated tasks/subtasks in WM to be

accomplished.

– Human-based influence (hi ), which is provided to node

i by the physical interaction between the human and the

robot; it emphasizes enabled nodes, which are also coher-

ent with respect to the human guidance.

– Accessibility-based influence (ai ), which is provided by

the environment, it emphasizes enabled nodes whose tar-

gets (e.g., objects, locations or trajectories) are more

accessible (e.g., closer).

The task-based influence is the weighted sum of the

contributions inherited from the other nodes in WM, i.e.,

ti =
∑

j �=i wi, j c j . Instead, the human and the accessibility

influences are combined together into a unique contribution

ci,i due to external stimuli. This is obtained by the following

convex combination:

ci,i = mh · hi + ma · ai (3)

with ma, mh ∈ [1, 0] and ma = 1 − mh . This weighted

sum is exploited to mediate between accessibility and human

guidance. The accessibility-based influence drives the robot

towards the closest location where an operation can be per-

formed (target), as specified by Eq. 4:

ai =
dM AX − d(i)

dM AX

(4)

where d(i) is the length of the trajectory calculated to reach

the target of the node i , and dM AX is the maximum reachable

distance in the robot workspace.

The human-based influence should induce the CoBot to

move towards the target pointed by the operator guidance.

In our framework, each possible target location is associated

with a score sh(i) ∈ [0, 1], obtained from the assessment of

the human physical guidance given the target associated to
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node i . Such score is an output provided by the LSTM clas-

sifier and estimates how likely the user is driving the robot

to that location (as detailed in Operator intention estimation

section). The human-based influence is then defined as fol-

lows:

hi =
max(0, sh(i) − λ)

1 − λ
, (5)

where λ ≤ 1 is a suitable threshold used to discriminate the

reliability of the score.

Depending on the balances of weights in Eq. 3 we can

introduce the following execution setups:

– Human-guided: enabled when mh >> ma ; in this case,

the CoBot is more prone to follow the human guidance

rather than possible alternatives enabled by the plan and

suggested by the environment (i.e., targets accessibility).

– Target-guided: associated with ma >> mh ; in this mode,

the CoBot tends to act according to the plan guidance

and the environmental stimuli, rather than following the

operator inputs.

– Balanced: when ma ≈ mh the system is not biased

towards accessible targets or human guidance, but the

robotic behavior is equally sensitive to both of them.

The combined effect of the human and the accessibil-

ity influences can be exemplified considering the scenario

depicted in Fig. 3, which represents target points in a

workspace to be reached by the robot end-effector with

human assistance. The collaborative task is decomposed into

5 behaviors, each associated with a target location (the col-

ored points depicted in the figure). We assume all behaviors

are always enabled (satisfied preconditions) with the same

task-based influence since the goal is to reach all the target

points without a specific ordering. During the execution, the

operator can physically interact with the robot to drive its

end effector toward the desired location (e.g., from W P1 to

W P4).

The development of the activation values in this scenario

is illustrated in Fig. 4. The first two charts plot the temporal

evolution (in timesteps sampled at 120 H z) of the distance

and the human intention stimuli for each active concrete

behavior associated with a target point (W P1, …, W P5).

The other three charts plot the evolution of the combined

contributions assuming 85–15%, 60–40% and 25–75% of

balance between the accessibility and the human intention

stimuli; these three cases are examples of the target-guided,

balanced, and human-guided modes, respectively.

Coming back to Fig. 3, it shows the robot end effector

starting from a position close to W P1 and W P2 to progres-

sively reach W P4 while passing near W P3. The associated

activations are plotted in Fig. 4. As illustrated in the sec-
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Fig. 3 Example scenario: combined human and accessibility influences

while the robot moves from W P1 to W P4

ond chart of Fig. 4, initially the human guidance is neglected

(sh < λ), and the robot behavior is mainly affected by the

proximal waypoints, at about half a second (around 40 steps)

the human guidance is also considered (sh > λ) and W P3,

W P4 and W P5 are recognized as possible targets. Notice

that W P1 and W P2 are opposed to human guidance there-

fore they do not receive stimuli, while W P4 is the target that

better fits the guidance, hence it receives the higher stimulus.

In the target-guided setting (third plot), alternative targets

compete and the robot has to reach a certain distance from

W P3 before the desired target W P4 becomes the one win-

ning. Instead, in the balanced an human-guided settings (last

two plots), since the score of the human intention estimation

is higher, the behavior associated with W P4 immediately

wins the competition among the other targets.

Low level control

In this work, we assume that the robotic system is controlled

in position and the control input of the system is represented

by the desired position of its end-effector. Here, a compliant

behavior is deployed by means of the classical admittance

control schema (Siciliano et al., 2008) to allow the human

operator to physically interact with the manipulator. In this

context, the system dynamics is described by Eq. 6 that maps

the overall forces acting on the end-effector with its position

in the Cartesian space as follows:

ftot = Mp + D ṗ + K p̈ (6)
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Fig. 4 Temporal evolution of behaviors’ activations with respect to

target accessibility (distance stimuli) and human influence

where p, ṗ and p̈ respectively represent the position, veloc-

ity, and acceleration of the robot, while M , D, and K are three

control gains describing the mass, damping, and spring of the

second order virtual mechanical system. Starting from Eq. 6,

the desired acceleration of the robot is trivially calculated in

order to obtain the position to command. Pursuing our main

goal, the ftot forces are generated by the Shared Controller

module of the system architecture as a combination of two

components: the external forces fext exerted by the human

operator during the co-manipulation task; the forces fa gen-

erated by the autonomous system during the autonomous

motion. The latter are properly calculated to reach the target

provided by the High-Level Control layer (the one winning

the contention, as described above). In particular, once a new

desired waypoint is selected, the Shared Controller module

generates a 3D geometric trajectory connecting the current

position of the manipulator and the waypoint. Hereby, the

goal of fa is to constrain the robot along the generated path.

Such forces are calculated as a function of the euclidean dis-

tance between the end-effector current position xc and the

desired position along the path in a given time, as reported

in Eq. 7:

fa = K p(xd − xc) + Kd(ẋd − ẋc) (7)

where K p and Kd are the proportional and derivative gains,

respectively. This formula defines the dynamic relationship

between the applied forces and the motion of the robot

thought a virtual inertia (K p) and damping (Kd ) values. Dif-

ferently, xc and ẋc represent the current position and velocity

of the manipulator, while xd and ẋd are the desired ones.

Moreover, when no target has been selected by the higher

layer of the architecture, the autonomous forces are nulli-

fied, allowing the robotic system to respond to the human

forces only, in so enabling the passive control mode.

Operator intention estimation

In our framework, human-robot collaboration is supported

by the interpretation of the operator’s intention from his/her

physical guidance during the execution of the shared task. To

assess human intentions, we follow and extend the approach

proposed in our previous work (Cacace et al., 2018), where

human physical interventions on the robot are evaluated with

respect to targets and related trajectories exploiting a neural

network. Specifically, the human interventions, are classified

by the network in the following categories depending on the

concordance of the operator inputs with respect to targets and

trajectories:

– Concorde (C): Human guidance follows the trajectory.

– Deviation Concorde (D_C): The operator wants to mod-

ify the trajectory without changing the active target.

– Opposite (O): The operator wants to go against robot

motion.

– Deviation Opposite (D_O): The operator wants to switch

target.

In Cacace et al. (2018), the classification is performed by

a three-layered Fully-Connected Feed-Forward (FF) Neu-

ral Network composed of an input layer, a middle layer,

and an output layer. The input layer takes an interaction
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snapshot made up by the human force magnitude ‖Ft‖, the

angle between human force direction and planned motion

dp = � (dd , dp), and the distance between the position

of the end-effector, and the closest point of the trajectory

dh = ‖X p − Xc‖. The middle layer consists of 25 nodes con-

sidering the sigmoidal activation function. Finally, 4 nodes

corresponding to the possible classes make up the output

layer. The proposed network model tries to generalize human

intention classification taking into account only one single

step of the interaction, i.e., one vector h = (dp, dh, ‖Ft‖).

The approach is reactive and provides satisfactory results

(Cacace et al., 2018), on the other hand, the classification

is instantaneous and does not exploit the history of past

interactions to disambiguate the human intent. In this work,

we extend this approach in order to enhance the intention

recognition process by exploiting the flow of data collected

during the human-robot interaction. Indeed, data about pre-

vious interactions may not only support the interpretation

of the current intervention but also reduce possible obser-

vational errors, caused either by the sensors or by the way

the human touches the robot during collaborative task execu-

tion. In this direction, we propose to deploy Recurrent Neural

Network (RNN) based on LSTM nodes, which are particu-

larly suited for time series classification. LSTM networks

have been introduced to address the vanishing gradient prob-

lem in RNNs exploiting gates that selectively retain relevant

information while forgetting irrelevant information. Specifi-

cally, each LSTM node is composed of a memory cell and 3

different networks called gates (i.e., input gate, forget gate,

output gate) acting as regulators for the manipulation and the

utilization of the memory.

Our intention classification network consists of an input

layer, a hidden layer made up of LSTM cells, and an output

layer associated with a softmax function. Notice that a new

classification network is allocated for each trajectory/target

to be assessed, therefore, in order to limit computational

effort and memory usage, the desiderata is to deploy simple

and small network structures. For this purpose, we designed

a method for sequence classification that enables online

deployment of such networks.

Given an input sequence h=(h1, . . . , hn), where each hi

represents the i-th human interaction snapshot, and given its

corresponding classification sequence s=((y1,1, y1,2, y1,3,

y1,4), . . . , (yn,1, yn,2, yn,3, yn,4)), where each 4-tupla repre-

sents the outputs related to the 4 classes introduced above,

the class c assigned to h is the first one for which there

exists a subsequence (yt0,c, . . . , yt0+�,c) such that for all

t ∈ [t0, t0 + �], we have that yt,c > λ holds. That is, the

sequence h is assigned to the class c, such that the classifi-

cation result c remains coherent for a fixed time windows �,

with confidence always greater than a fixed threshold λ in

that window.

Algorithm 1 RNN training algorithm.

1: procedure train(train_steps,epochs,h_si ze)

2: net = random_weights(h_si ze)

3: best_acc = 0

4: batches = spli t_into_batches(train_x, train_steps)

5: for i ← 1 to epochs do

6: for j ← 1 to length(batches) do

7: net = train(net, batches[ j], train_y)

8: acc = evaluate_network(net, test_x, test_y)

9: if acc > best_acc then

10: best_net = net

11: best_acc = acc

12: net = reset_states(net)

13: return net , best_acc

In our experimental setting, � was empirically set to

40 steps (about half a second and about one third of the

length of all the sequences in the dataset), while λ was set

to 0.5. In the training phase different hyperparameters, such

as hidden layer size and a number of training epochs, have

been tested in order to select the network with satisfactory

accuracy in the proposed application. The dataset has been

generated by physically interacting with the robot during its

motion from one point to another following a simple trajec-

tory while recording data at 100 Hz. Since sequences with

different lengths can be collected, these were divided into

subsequences of a fixed length to be used in batch for learn-

ing. Specifically, we used 120 timesteps (about 1 second),

shortest sequences were discarded, while sequences longer

than 120 timesteps were divided into subsequences of the

fixed length. Notice that in the experimental setup, the fixed

length was chosen considering, on the one hand, the statistics

of the dataset (average length and percentiles), on the other

hand, the latency given to the system to assess the human

intention (about 1 second). The collected dataset was then

randomly split into a training set and test set, covering the

80% and 20% of the data and an amount of 443 and 111

sequences, respectively.

The procedure adopted to train the classifier is reported

in Algorithm 1. Here, a trained network for a given con-

figuration of the hyperparameters is obtained by running

batch-training over different learning epochs. Specifically,

at the beginning of the process, a network is generated with

a h_si ze number of LSTM nodes for the hidden layer and

random weights in the interval [−1, 1] (line 2–3). Then, the

training set is split into batches by grouping together subse-

quences of train_steps size (line 4). For each epoch (line

5), batch-training is performed through forward and back-

propagation (lines 6–7), then the performance of the trained

network is evaluated (line 8). At the end of the epoch, the

best regulation is updated (lines 9–11), and the states of the

LSTM network are reset (line 11). Finally, the best network

and the best accuracy found during the training process are

returned (line 12).
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Table 1 Accuracies with different hyperparameters

LSTM nodes Steps Epochs Accuracy (%) Average F1

8 1 150 81.08 0.83

8 5 300 84.68 0.85

8 10 850 83.78 0.84

8 20 850 83.78 0.84

8 30 400 81.98 0.83

8 40 850 83.78 0.85

8 60 850 78.38 0.79

8 120 800 73.87 0.75

16 1 400 83.78 0.85

16 5 700 86.49 0.87

16 10 650 84.68 0.85

16 20 200 83.78 0.84

16 30 300 79.28 0.82

16 40 950 81.98 0.84

16 60 1300 81.98 0.83

16 120 850 81.98 0.82

24 1 650 83.78 0.85

24 5 550 84.68 0.86

24 10 200 82.88 0.83

24 20 200 84.68 0.85

24 30 250 82.88 0.84

24 40 350 81.92 0.83

24 60 800 85.59 0.86

24 120 600 82.88 0.82

Table 1 reports the different accuracies reached with dif-

ferent train steps, different training epochs, and different

sizes of the hidden layer. For ease of comprehension, not

all of the combinations are reported. The obtained results

show that, on average, satisfactory accuracies are reached

faster when shorter training steps are exploited. On the other

hand, with longer training steps more epochs are needed,

while we empirically observed that accuracies may also get

worse. In particular, learning on shorter subsequences seems

a better choice for on-line classification since the network

tends to classify with less information and to better manage

its memory during the interactive execution. In this respect,

its worth recalling that the intention classifier is designed

to be a component of the overall interaction system and

to balance accuracy, computational effort, memory usage,

and reactivity. The intention classification results are indeed

continuously integrated by the executive system with other

influences (i.e., accessibility and task-based guidance) to

affect internal regulations and behavior selections (see Clas-

sification and regulations section).

An example of how the trained network classifies a

sequence is illustrated in Fig. 5. Here, the network seems

to start from a state of indecision between the Deviation
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Fig. 5 Example of LSTM classification

Concorde and the Deviation Opposite classes. However, the

decrease of the angle and the force breaks the ambiguity,

determining Deviation Concorde as the winning class. Notice

that this behavior is satisfactory for the interaction, indeed

the two classes are very close, hence their classification can

remain not defined until the operator solves the ambiguity

with a physical intervention aligned or against the proposed

trajectory.

Finally, to further highlight the importance of the inter-

action history in the intention estimation process, we can

compare the proposed LSTM network with respect to the FF

network presented in Cacace et al. (2018). As expected, the

LSTM-based classifier reaches a higher accuracy (86.49%.

vs 80.84%) once assessed over the same test set, but it also

provides additional advantages. The difference between the

two approaches can be exemplified in Fig. 6, where the same

input sequence is classified deploying the two networks. The

first three plots of the figure illustrate the input data (force,

angle, distance), while the remaining two plots show the

highest score and the associated class obtained with the two

methods. In the reported case, we can observe how the FF

network easily tends to be confident about the class of a

single snapshot, but noise in the input data (e.g., spikes in

the angle values) may provide sudden changes in classifica-
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Fig. 6 An input sequence classified by the LSTM network and the

FF network presented in Cacace et al. (2018). The first three charts

represent the inputs of the classifiers, while the last two are the scores

of the winning class respectively by the FF and the LSTM network

tion. In contrast, the LSTM network shows lower scores for

the same input sequence, but it seems more robust to noise,

which is a desirable behavior since the classification result

coherence influences the smoothness and consistency of the

overall interaction.

Experiments and results

In this section, the evaluation of the proposed approach is

discussed. We designed an experimental setup inspired by an

industrial scenario in which a human operator interacts with a

CoBot for the collaborative execution of different operations.

Fig. 7 Experimental setup with labeled points

The shared workspace is depicted in Fig. 7, it illustrates a

mockup, which is mainly made up of the cardboard cutout,

representing a surface with 5 holes, where operations must be

executed. Since the main interest in this work is human-robot

collaboration, such operations were simulated, and a mockup

3D-printed tool has been attached to the robot’s flange. In all

of the experiments, a balanced setup for robot’s behavior was

used, with 50% of importance given to environmental and

human influences, in order to analyze the users’ interaction

in a uniform setting where both the human and the robot

guidance are active without a preset bias.

Tests were performed using the Kuka LBR iiwa manipula-

tor, controlled via ROS middleware (Joseph & Cacace, 2018)

running on a standard version of Ubuntu 18.04 GNU/Linux

OS. The ATI Mini 45 Force sensor has been used to detect the

human input to command the robot. The LSTM network has

been implemented using TensorFlow library through Keras

high-level interface programmed in Python language.

Task description

The experimental task consists in the execution of mockup

tapping operations on all of the holes on the cardboard, fol-

lowing a specific sequence provided to the operator only.

Since such sequence is unknown to the robotic system, the

human co-worker is to intervene throughout the experiment

to assure the desired order of execution. In this context,

his/her job is to physically suggest, when needed, the next

target point to the robot, through corrective hand-guided

interventions on the end-effector. In this scenario, the tap-

ping operation is simulated by a movement of the robot

end-effector entering and exiting inside and outside the hole.

Figure 8 illustrates a snapshot of the WM structure during the

execution of the collaborative task. In this context, dashed-

border inner nodes represent abstract tasks and subtasks,

while leaves are executable actions (behaviors allocated in
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Fig. 8 Working memory during the experiment execution. The green

ovals are enabled tasks/subtasks, while the read ones are disabled; dot-

ted and solid ovals are for abstract and concrete activities respectively.

In this stage, two tapping subtasks are concurrently enabled and two

associated operations (approach waypoint 1 or waypoint 2) are in con-

tention

WM). Here, a node is red when not all of its preconditions are

satisfied, and all its subtasks are hence disabled; green nodes

are enabled tasks to be executed; edges between nodes cap-

ture the dependencies between a task and its subtasks; these

are labeled with preconditions (green if satisfied, red other-

wise). The overall experiment is represented by a task made

up of five subtasks of the type tappingTask, each correspond-

ing to the execution of the tapping of a single hole, which is

labeled with an ID. The tappingTask itself includes the fol-

lowing subtasks: approaching the point where the operation

has to take place (e.g., approach(1)), execute the required

operation (e.g., executeTapping), while monitoring of the

operation itself (e.g., monitoringTapping). The approach

subtask is dedicated to reaching the point of interest. It is

enabled when the tool equipped on the flange is the correct

one, i.e., when the tool(tap) variable is true, and the robot is

not busy. The CoBot is considered busy when it is in the area

of interest of a hole. The executeTapping subtask represents

the actual execution of the operation. It is enabled when the

correct tool is mounted on the robot end-effector and the robot

is close to the hole area (waypoint(ID.approach).reached).

The correct execution of the tapping operation is supervised

by the monitorTapping subtask exploiting a set of condition-

action rules. Finally, in Fig. 8, monitorWp monitors when a

target area is entered/exited by the robot manipulator, while

hcStream detects contentions among concrete behaviors in

WM.

Experiments

For each experimental session, testers are asked to execute

the task in three modalities: Passive, Guided, and Proactive,

each associated with a specific robot attitude in selecting

and approaching target points depending on the human guid-

ance. In the Passive mode, the user is to physically bring

the robot end-effector close to the hole, then the robot can

autonomously adjust its position and execute the tapping

operation. In contrast, in Guided and Proactive modes, the

collaborative system can assist the user during the approach

of each target. In this phase, the target intended by the human

is recognized exploiting the LSTM-based assessment of the

operator’s physical guidance. Once the user perceives the

robot moving towards a target, he/she can either continue to

hand guide the CoBot (to adjust the trajectory or the target)

or let the robot approach such point autonomously. In the

Guided setting, once a subtask (tapping operation) is accom-

plished, the robot always waits for the user hand guidance

to continue the execution towards the next target. Instead, in

the Proactive setting, the CoBot does not wait for any user

intervention and directly proceeds towards the next target

enabled by the plan and suggested by the operational con-

text. For each setting, the operator is to exploit his/her hand

guidance to induce the robot to execute the tapping operations

in the requested order. The sequence follows the waypoints

numbering reported in Fig. 7, where consecutive targets at
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Table 2 Questionnaire provided to testers

Questionnaire

Personal information

Age?

Gender?

Level of education?

How familiarized are you with robotic applications?

How familiarized are you with cobots?

Personal feelings

Safety How safe did you find the system

during the execution of the test?

Comfort How manageable was using the sys-

tem?

Intuitiveness How intuitive was learning how to

use the system?

Frustration How frustrating was interacting

with the robot while executing the

task?

Utility How much do you think the system

helped in executing the task?

Performance evaluation

Reliability How coherent was the robot, com-

pared to your actions?

Readability How understandable was the behav-

ior of the robot during the execution

of the test?

Efficiency How much do you think the sys-

tem helped in completing the task

faster?

Effectiveness How much do you think the system

helped in completing the task cor-

rectly?

Physical demand How much physical effort was

needed to execute the task?

Mental demand How much mental demand was

required to execute the task?

Satisfaction How much success did you have in

executing the task?

Pressure How much under pressure did you

feel while executing the task?

different ranges have been considered to provide a realistic

and general layout.

The experiment was carried out by 40 testers, graduate

and post-graduate students (with participants’ age ranged

from 18 to 35), not always acquainted with robotics applica-

tions. After each test, we asked testers to fill the questionnaire

showed in Table 2, which is inspired by the NASA Task Load

Index (NASA-TLX) (Hart & Staveland, 1988) and suitably

adapted/extended with typical questions proposed in HRI lit-

erature (Steinfeld et al., 2006; Young et al., 2011; Broquère

et al., 2014; Chen & Kemp, 2010; Maurtua et al., 2017) to

assess the interaction and the performance. A 5-point Likert

multi-item scale was employed for the survey.

For each test, we also measured the time to complete the

task (execution time) and the overall physical effort exerted

by users (overall effort) during the experiments. The latter

has been calculated as the cumulative impulse (force over the

time interval) applied to the robot by the operator throughout

the experiment.

Results and discussion

In this section, we discuss the collected empirical results

including users’ performance and users evaluations.

As for performance data, in Table 3, for each modality we

report the mean and standard deviation values of the execu-

tion time and the overall effort applied by testers during the

experiments. In this respect, data from Table 3 shows that

the system’s assistance can reduce, on average, the users’

overall effort by about 50% in Guided mode and by almost

70% in Proactive mode. Such outcome is strengthened by

users’ answers illustrated in Table 4, that reports, for each

modality, mean and standard deviation of the scores pro-

vided by testers. Specifically, even though the execution of

the task was considered a little physically demanding in all

modalities (physical demand in Table 4), significance results1

(p < 0.001) show that users perceived the effort reduction

due to the introduction of the system.

As far as task performance is concerned, in Table 3 we

observe that the system assistance seems to not significantly

affect the time performances (the slightly positive effect is

not significant enough). Nevertheless, users perceived the

system’s assistance to bring significant improvements in per-

formances: in Table 4 the Passive mode is considered one

point below the others two modes for both efficiency and

effectiveness (p < 0.001). Similarly, the Proactive and

Guided setups are generally assessed as more useful than

the passive one (utility in Table 4). These results suggest that

even in the absence of a significant improvement in time per-

formances, users still have an overall positive feeling about

the support provided by the Proactive and Guided systems

during task execution. On the other hand, from the compar-

ison between the Proactive and Guided modalities does not

emerge a significant preference. We expected the Proactive

mode to be assessed as more useful (utility in Table 4) than

Guided one, but this is not supported by the significance test

(p > 0.1). Similar results apply to efficiency and effective-

ness.

1 The Wilcoxon signed-rank test (Wilcoxon, 1945) with Pratt modifi-

cation (Pratt, 1959) (for zero differences in Liker values) was deployed

since the collected questionnaire results are paired and not normally

distributed.
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Table 3 Data collected during the experiments

Modality Overall effort (Ns) Execution time (s)

Passive 97.35 ± 26.48 93.33 ± 9.60

Guided 52.44 ± 22.59 89.87 ± 9.94

Proactive 29.20 ± 12.20 88.44 ± 7.86

Table 4 Questionnaire results: mean and standard deviation values of

the users’ answers

Modality

Passive Guided Proactive

Safety 4.53 ± 0.82 4.58 ± 0.64 4.2 ± 0.88

Comfort 3.88 ± 0.94 4.33 ± 0.66 4.30 ± 0.69

Intuitiveness 4.63 ± 0.74 4.63 ± 0.59 4.60 ± 0.67

Frustration 1.85 ± 1.17 1.53 ± 0.91 1.60 ± 1.00

Utility 3.35 ± 1.41 4.33 ± 0.73 4.50 ± 0.94

Reliability 4.60 ± 0.78 4.70 ± 0.46 4.28 ± 0.82

Readability 4.67 ± 0.58 4.74 ± 0.44 4.31 ± 0.86

Efficiency 3.23 ± 1.19 4.15 ± 0.62 4.33 ± 0.83

Effectiveness 3.73 ± 1.36 4.58 ± 0.68 4.50 ± 0.85

Physical demand 2.15 ± 1.37 1.53 ± 0.96 1.33 ± 0.73

Mental demand 1.75 ± 1.08 1.43 ± 0.81 1.45 ± 0.88

Satisfaction 4.35 ± 0.98 4.73 ± 0.51 4.65 ± 0.62

Pressure 1.48 ± 0.85 1.45 ± 0.75 1.5 ± 0.75

Concerning users’ experience while interacting with the

robot, the collaborative system is mostly considered as safe

(safety in Table 4), with a mean value of about 4.5/5, while

comfort values show that the robot remains easy to han-

dle even during autonomous motion. The interaction was

generally felt a little frustrating, with mean scores of such

parameters below 2. These results show that testers are usu-

ally not afraid or intimidated by the physical interaction with

the CoBot, instead, this is assessed as safe, comfortable, and

fluent. Moreover, the system is on average considered as

always intuitive to use for each of the three setups. Positive

reviews on reliability and readability parameters were given,

with mean scores between 4 and 5. The small differences in

mean scores for reliability show that, even when the robot

moves autonomously, the users feel the robot understands

their intentions. The same considerations apply to readabil-

ity, whose values suggest that users can understand what the

robot does, and how it reacts according to human intention.

As for the comfort of the interaction, the assisted modes are

moderately preferred over the passive one; in this case, the

preference of the Guided mode with respect to the Passive

mode seems more pronounced (p < 0.001) than the Proac-

tive mode preference (0.001 < p < 0.005).

In order to determine a preference order between the

modalities, total scores were calculated for each of them.

Table 5 Total scores for each execution modality

Mean sum of scores

P G A

53.68±7.69 58.78±4.84 57.75±5.67

Scores given to negative parameters, such as frustration and

physical demand, have been inverted, while the total user

score for a modality has hence been calculated as the sum

of his/her associated votes (the maximum total score is 65).

Table 5 shows, for each modality, the mean and standard

deviation values of the total scores from each user. Such

results show that robot assistance is generally preferred and

the Guided mode is on average considered the best one.

To summarize, Guided and Proactive modes provide a

collaborative system that allows the robot to assist the user

throughout the execution of tasks, instead of being simply

passive while guided. We also observed that such mecha-

nisms reduce the overall human effort, and such improvement

has been perceived by the users too. Users have shown not to

be afraid of interacting with the robot in the assisted modes

and judged the interaction itself as intuitive and not frustrat-

ing; in these settings, the robot’s behavior has been assessed

as understandable and reliable. Finally, overall scores derived

from users’ questionnaires, suggest, as expected, that robot-

assisted modalities are preferred by users, likely because

they perceive the effort reduction and appreciate the robot

to work as autonomously as possible for the completion of

the task. Between the two robot-aided modalities, the Guided

one has generally obtained better scores. Looking at Table

4, it is observable that the Proactive mode on average wins

at the task level, since it is considered more efficient and use-

ful, and less physically demanding. On the other hand, the

Guided mode has been judged generally more safe, reliable,

readable, and satisfactory, and users have felt less frustration,

pressure, and mental demand. The reasons for such outcomes

can be found in the fact that users may dislike not having full

control of the system. When the CoBot moves on its own,

more attention is needed in supervising the system, and this

may stress users. In contrast, during the Guided modality,

the robot always waits for a user physical input before act-

ing, hence the human working times are better followed, in

so enabling a more comfortable interaction.

Conclusion

In this paper, we proposed a human-robot interaction system

for CoBots that interprets the human physical guidance dur-

ing the execution of hierarchically structured collaborative

tasks. In this setting, human interventions are continuously

123



3066 Journal of Intelligent Manufacturing (2023) 34:3053–3067

assessed with respect to shared tasks to be accomplished

at different levels of abstraction, while the robot behavior

and compliance are regulated accordingly. In the proposed

framework, both human and robot activities are supervised

and orchestrated by an executive attentional system, which

enables multiple task execution and smooth task switching

depending on the environmental stimuli and the operator

interventions. Specifically, the executive system is endowed

with attention regulation mechanisms affected by task guid-

ance, targets’ accessibility, and human guidance. These

influences are continuously assessed, combined, and suit-

ably weighted in order to balance the tendency of the system

to follow human intentions or autonomously executing the

scheduled actions. In this setting, the human guidance is

monitored by LSTM networks that classify operator physical

interventions with respect to targets and trajectories admitted

by the allocated tasks. These classification results are simul-

taneously exploited by attention-based regulation/selection

processes to align adaptive task orchestration with respect to

the estimated human intentions.

We illustrated the proposed human-robot collaboration

framework detailing the overall architecture, its main compo-

nents along with the associated interpretation and regulation

mechanisms. In order to assess the performance of the pro-

posed system, we designed an experimental setup inspired

by an industrial scenario, where a human operator phys-

ically interacts with a lightweight manipulator during the

execution of multiple tapping operations. In this setting, we

carried out a pilot study to evaluate system performance and

human-robot interaction in three different setups, namely,

Proactive, Guided, and Passive mode, each associated with

a different attitude of the robotic system with respect to the

task and the human guidance. From performance evaluation,

we observed that both Proactive and Guided assistance can

significantly reduce the overall effort of the human opera-

tor during collaborative task execution with respect to the

Passive mode, which is used as baseline. The benefit of the

two assisted modes with respect to the Passive one is con-

firmed by the user experience evaluation, which also shows

a preference for the Guided setting despite the Proactive

advantage in effort reduction and task execution support. In

this respect, the Guided mode seems to provide a better bal-

ance between natural interaction (more intuitive, readable,

reliable, less mentally demanding) and effective task execu-

tion (safer, more effective, satisfactory).

Notice that in this work we focused on physical interac-

tion and physical guidance only, as a future work, we are

interested in investigating whether in a multimodal interac-

tion setting the proposed assisted modalities can be evaluated

differently by users. For instance, visual and audio feed-

back may provide additional information about the robot

state to improve readability, safety, and reliability of the

assisted modes. Moreover, gesture-based and speech-based

interaction modalities may complement physical interaction

to enable a more natural human-robot communication, while

enhancing the robustness of intention estimation.

Concerning the limitations of the proposed evaluation,

it should be noted that we deployed a laboratory proto-

type on a mockup scenario to get an initial assessment of

the proposed human-robot collaboration modalities involv-

ing generic users (non-specialized testers) for the execution

of a generic structured task. Since we aim at an intuitive and

natural interaction experience, generic users provide valuable

feedback. As a future work, we plan to move this technology

from laboratory research to industrial scenarios. In this direc-

tion, more focused case studies will be designed involving

expert workers in the evaluation process. In these settings,

the user experience of specialized workers may diverge from

the one of generic testers, while technology acceptance in a

real workspace is another relevant issue to be considered and

investigated.
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