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Abstract— This work addresses the problem of transporting
an object along a desired planar trajectory by pushing with
mobile robots. More specifically, we concentrate on establishing
optimal contacts between the object and the robots to execute
the given task with minimum effort. We present a task-oriented
contact placement optimization strategy for object pushing
that allows calculating optimal contact points minimizing the
amplitude of forces required to execute the task. Exploiting
the optimized contact configuration, a motion controller uses
the computed contact forces in feed-forward and position error
feedback terms to realize the desired trajectory tracking task.
Simulations and real experiments results confirm the validity
of our approach.

I. INTRODUCTION

Manipulating objects in the real world is one of the

primal tasks of a robotic system, and how the robot interacts

with the environment has been a subject of several research

studies [1]. Frequently, especially in industrial scenarios,

the robot is equipped with an ad-hoc end-effector that has

been purposefully designed to fulfil a specific task. More

generic end-effectors, like robotic hands, are employed in

scenarios where this is not possible due to a lack of knowl-

edge about the shape of the object to manipulate or when

restricting the operational capabilities of the manipulator to

specific classes of objects is not convenient. Not having

a pre-designed way of manipulating an object opened a

different class of engineering problems: what is the best

way to grasp a given object? For many years, the solutions

have been based on the concept of force closure or form

closure [2]. These grasp configuration properties ensure that

the object is rigidly attached to the manipulator and that the

mechanical connection can sustain, to some extent, the forces

required by the manipulation task. However, the inertial and

gravitational effects during manipulation can severely affect

the stability [3], dexterity [4] and disturbance resistance

capability [2] of the grasp, especially with heavy objects. In

these scenarios, inadequate grasp configurations could mean

failing the manipulation or even rupture of the end-effector

mechanism. Grasp synthesis algorithms can be employed to
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Fig. 1. Picture of the problem addressed in this work: a group of mobile
robots has to manipulate an object by pushing it along a trajectory. The
aim is to establish optimal contact points to simultaneously minimize the
trajectory tracking error and the contact forces along the task execution.

consider these factors [5] and obtain a resilient grasp config-

uration. When the task is known, it is intuitively convenient

to include its information in the grasp generation procedure.

The authors of [6] propose a task-oriented quality measure

to assess how suitable a grasp is with respect to a given task.

In [7], the authors propose a grasp synthesis algorithm that

computes the optimal grasp for a task whose force/torque

requirements are extracted from a human demonstration.

However, these strategies cannot be applied if the target

object is too large, too heavy to be transported, or too

delicate to handle by a firm grasp. In these scenarios, non-

prehensile manipulation approaches [8] can be exploited to

achieve the desired task by removing some of the intrinsic

limitations of grasping. In detail, these are strategies where

one or multiple robots impose the motion to the object

through unilateral constraints only: the pushing manipulation

primitive considered in this work is a typical example of

non-prehensile manipulation. However, the application of

non-prehensile manipulation techniques is non-trivial since

they require taking into account several factors, such as the

dynamics and the kinematics of both the object and the

robots, as well as the environment since each exchanged

force can significantly impact the outcome of the task.

One of the most common approaches to non-prehensile

manipulation involves the computation of a motion model

given a contact configuration [9]–[11] to design a planning

or control architecture to fulfil the manipulation task. In this

work, we tackle the non-prehensile manipulation problem

from a different point of view. Starting from a manipulation



task encoded by a planar trajectory, we identify a non-

prehensile contact configuration established by a group of

robots that is best suited to track the task trajectory (see

Fig. 1). We then employ a control strategy to command a

team of mobile robots to execute the desired pushing action

onto the object.

II. RELATED WORKS AND CONTRIBUTION

Pushing manipulation belongs to the broader class of non-

prehensile manipulation actions [8]. These include throw-

ing [12], catching [13], batting [14], rolling [15], and so on.

The main advantage of non-prehensile manipulation lies in

using simple robot end-effector designs to perform various

manipulation tasks robustly [16]. However, this comes at

the expense of endowing robots with good physics models.

The mechanics of pushing manipulation have been explored

in the literature to identify a usable motion model for

practical applications. The works presented in [17] and [9]

have enabled the design of planning algorithms for pushing,

such as the one presented in [18] that exploits a two-layer

random sampling strategy to generate a feasible manipulation

sequence. The field of control algorithms has also benefited

from the ability to predict the motion of a pushed object,

designing controllers specific for pushing applications. One

example is presented in [10], where the authors integrated the

pushing stability constraints into a model predictive control

scheme to control a mobile robot. With a similar approach,

the authors of [11] apply a predictive control strategy to the

manipulation of a planar object by pushing with a robotic

arm, considering the possibility for the contact point to slide

onto the surface of the object.

Non-prehensile manipulation has been recently realized by

exploiting the properties of flexible elements. For example,

the robots are equipped with a flexible cable in [19], in which

the authors propose a planning method to define the motion

of the robot exploiting the cable for pushing an object. In a

more generic scenario, the authors of [20] proposed a strat-

egy for instructing a pair of mobile robots connected through

a cable to pull a heavy object cooperatively. However, the

interconnection between robots can significantly reduce their

freedom of motion.

By having the robots push directly onto the object, it

is possible to avoid these restraints [21], given that the

robots can freely navigate the environment without colliding

with possible obstacles and therefore change their relative

position with respect to the object. The authors of [22]

achieve this behaviour by dealing with uncertainties in both

control and motion execution with an appropriate planning

strategy that considers an increased size of the pushed object

to accommodate re-positioning manoeuvres of the pushing

robot. An artificial potential field is designed in [23] to let a

robot, or a team of robots, push an object by only measuring

its instantaneous direction of motion.

Most of the works mentioned above, especially those

related to planning, have in common the presence of a task

generated to be feasible for a specific pushing configuration.

In the literature, the problem of how to grasp a given object

to perform a specific task, which is usually encoded through

its desired trajectory while satisfying some optimal criteria,

is known as task-oriented grasping. This concept has been

successfully applied in numerous application scenarios [24]–

[28]. However, all the previous works considered either

force- or form- closure grasps, which allow the robot to treat

the object as entirely restrained. Indeed, none of the above

works has addressed the task-oriented optimal placement of

multiple robots around an object for non-prehensile pushing.

In this paper, we extend the use of such a concept to

non-prehensile pushing manipulation performed by a fleet

of autonomous mobile robots. Our main contributions can

be listed as follows:

• we define a task-oriented optimization procedure to op-

timally position the robots around the object to perform

a given task (tracking of the desired trajectory);

• we design a control algorithm that instructs the robots

on how to push the object to track the assigned task

trajectory properly;

• we thoroughly validate the presented procedures using

physical simulation and real-world experiments using a

non-optimized case as a baseline.

III. PROBLEM STATEMENT AND ASSUMPTIONS

The first challenge addressed here is the optimal posi-

tioning of the robots along the object perimeter to enhance

the object’s trajectory tracking performances and the pushing

robustness. More specifically, given a manipulation task, we

aim at identifying the optimal deployment of n robots in

contact with the object, also denoted as the grasp configura-

tion, that can fulfil the task in the most robust way possible.

The second challenge is designing a control algorithm for

the motion of the robots performing the manipulation of the

object along the desired trajectory. In detail, the algorithm

aims at reducing the tracking error of the object’s configura-

tion with respect to the desired trajectory, having each robot

push on the object from the predetermined optimized contact

position. To fulfil the presented challenges, we will consider

a system described as follows.

Let To ∈ SE(2) be the planar configuration of the ma-

nipulandum’s (the object to be manipulated) centre of mass

(CoM). Let mo, Jo ∈ R > 0 be the mass and inertia moment

of the object, respectively. The position of the i-th robot on

the plane is identified by pi ∈ R
2, expressed in {W}, the

global fixed reference frame. The robots are modelled as

circular objects of radius ri > 0 and can establish point

contacts with friction with the object’s perimeter [29]. We

assume the robots move on the plane following the motion

law of a single integrator

ṗi = ui. (1)

Figure 2 visualizes the considered system with an elliptical

manipulandum (grey) laying on the horizontal plane with

two robots (yellow) represented in the contact position. The

considered manipulation task is described as a trajectory

Γ composed of a timed sequence of object configurations

and the associated velocity at each generic time instant t ∈



Fig. 2. Visual representation of the considered system. Symbols are
explained in Sec. III.

Fig. 3. Close up visualization of the force applied on the object by robot i
as well as the borders of the associated friction cone. Symbols are explained
in Sec. IV-A.

[0, T ], with T being the trajectory duration. The following

additional assumptions are considered:

• all the contacts are modelled as point contacts with

friction [29], and interactions obey Coulomb’s friction

model with a known friction coefficient between the

parts in contact;

• the manipulated object and the robots lay in a planar

environment, with all the frictional forces acting on the

plane and gravity acting downward on the vertical axis;

• the frictional properties of the ground are uniform across

the environment;

• the motion is slow enough, such that inertial forces are

negligible or instantly absorbed by the frictional effects

(quasi-static assumption);

• the object’s perimeter is represented as a closed smooth

curve enclosing a convex region of the space.

IV. TASK-ORIENTED OPTIMIZATION AND CONTROL

ARCHITECTURE

A. Task-oriented optimal robots positioning

This section describes the calculation procedure used to

optimize the robots’ contact positions around the object. The

closed curve representing the object’s perimeter at a given

configuration To ∈ SE(2) is parametrized by θ, i.e., the

angle formed by the segment connecting the object CoM and

a point on the object’s perimeter. Given the object convexity

assumption, the value of θ corresponds to a given position

belonging to the object’s perimeter. Thus, a contact point

between the i-th robot and the object is identified by a

particular value of θi. We aim to calculate optimized values

of θi for each robot to perform the pushing task optimally.

At each contact point, we define a reference frame {Ci},

whose origin lies on the object’s perimeter, the x̂-axis is

directed along the perimeter tangent, and the ẑ-axis is

directed along the inward normal. The number of contact

points is nc, equal to the number of robots in contact with the

object. Denoting with Θ = [θ1, . . . , θnc
]T ∈ R

nc , the grasp

matrix G (Θ) ∈ R
3×2nc maps the contact forces and the

velocities between the object’s CoM, identified by the frame

{B}, and the contact frames {C1}, . . . , {Cnc
}. Generally, G

can be constructed given the generic i−th contact point pose

(pci , Rci ), with Rci ∈ SO(2) the rotation matrix of the frame

{Ci} and pci = [pci,x, pci,y]
T ∈ R2 the position of the origin

of {Ci} expressed in {B}, as follows (see [29])

G =

[

. . .
Rci 0

[−pci,y pci,x]Rc1 1
. . .

]

. (2)

Under the stated quasi-static assumption, the object dy-

namic model can be formulated as follows

ẋo = RoHG(Θ)Fc, (3)

where xo = [po,x, po,y, θo]
T ∈ R

3 denotes the minimal

representation of the object pose and ẋo its time derivative,

while Fc = [fT
c1
, . . . , fT

cnc
]T ∈ R

2nc is the vector stacking

the contact forces, fci ∈ R
2 with i = 1, . . . , nc, representing

the overall system’s input.

To be realizable, the contact forces Fc must belong to the

friction cone space. To facilitate the integration of this con-

straint in the optimization problem introduced later, a contact

force parametrization is introduced. The i−th contact force,

fci , can be expressed as a non-negative linear combination

of unit vectors f̂ci,j ∈ R
2, with j = 1, 2, denoting the i−th

friction cone boundaries. These vectors can be calculated,

using geometrical considerations (see Fig. 3), starting from

the friction coefficient µ ≥ 0 as follows

f̂ci,j = Ry(±θ̂)ẑi, θ̂ = arctanµ, (4)

where Ry(·) ∈ SO(3) is the rotation matrix around the

ŷ−axis, ẑi = [0, 0, 1]T ∈ R
3 is the contact normal expressed

in {Ci}, θ̂ ∈ R is the semi-aperture angle of the friction cone.

By denoting with F̂c = blockdiag
(

F̂c,1, . . . , F̂c,nc

)

∈

R
2nc×2nc the matrix encoding all the unit vectors

representing the boundary of the friction cones, i.e.,

F̂c,i =
[

f̂ci,1, f̂ci,2

]

∈ R
2×2, and with Λ =

[

λc1,1, λc1,2, . . . , λcnc
,1, λcnc

,2

]T
∈ R

2nc the associated

coefficients used to decompose the contact forces along

the friction cone boundaries, we can compactly express the

vector of stacked contact forces as follows

Fc = F̂cΛ. (5)



At this point, the contact forces belong to the composite

friction cone space (Cartesian product of all the friction cone

spaces) if Λ � 0, i.e., all the λi,j , with i = 1, . . . , nc and

j = 1, 2, must be non-negative [29].

A task-oriented optimal criterion is established to optimize

the positions of the robots around the object (and thus the

contact points). Given a task trajectory Γ to be realized

(tracked) expressed as a timed sequence of desired poses

for the object xo,d(t), 0 ≤ t ≤ T , we choose to optimize

the position of the robots (through the optimization of Θ)

to simultaneously minimize the task tracking error and the

associated contact forces (coefficients) to realize it. Mathe-

matically, the discretized problem is formulated as follows

min
Θ,[Λ1,...,ΛN ]

N
∑

k=1

1

2
||xo,d(k)− xo(k)||

2
Q +

1

2
||Λ(k)||2R (6)

s.t. xo(k + 1) = xo(k) +Ro(k)G(Θ)F̂cΛ(k),
(7)

DΘ+ Θ̄ � ε, (8)

Λ(k) � 0, ∀k = 1, . . . , N (9)

where k represents the generic time instant, N is the total

number of steps taken to accomplish the task (and it is related

to the trajectory duration T and the adopted discretization

step), xo,d(k) and xo(k) are the desired and the current object

positions at a given time step 1 ≤ k ≤ N , Q ∈ R
3×3 and

R ∈ R
2nc×2nc are diagonal and positive-definite matrices.

The constraint in (7) is obtained by combining the object

dynamic model (3) and the contact force parametrization (5),

while the constraint (9) denotes the feasibility of the contact

forces discussed above. The constraint (8) is used to avoid

collisions between the robots and is described hereafter. The

matrix D ∈ R
nc×nc is the collision matrix of the multi-

robot system deployed around the object (encoding potential

pairwise collisions among the robots), Θ̄ ∈ R
nc is the

vector taking into account the modulo 2π property of the

parametrized object perimeter, and are specified as follows

D =











1 −1 0 . . . 0
0 1 −1 . . . 0
...

. . .
...

1 0 0 . . . −1











, Θ̄ =

















0
...

2π
...

0

















,

where ε ≥ 0 is a non-negative constant vector denoting the

collision bounds to be opportunely chosen. The matrix has

a pair of 1 and −1 for every pair of adjacent robots around

the object (the first and last robots are considered adjacents).

The value 2π occupies the k−th component of the vector

Θ̄, and it is used to take the shorter distance between the

k−th and k + 1−th contact points when this last crosses

the value θ = 2π. This is used to calculate the right

minimum (angular) distance between the robots. The value of

εi (i.e., the i-th component of vector ε) represents the lower

bound on the angle between the computed configurations

of the two successive contact points/robots i and i + 1.

This parametrization can only be used in the case of convex

objects to improve performance. For concave objects, adding

self-collision avoidance will require more precise geometry

information.

B. Motion control for trajectory tracking

This section reports the proposed control scheme that

commands the robots to execute the considered pushing

manipulation task. More specifically, the objective of the

manipulation is to move the object on the plane following a

predefined trajectory Γ. To achieve this objective, we propose

to define the desired body force according to a proportional-

derivative control scheme. In particular, let xo,d ∈ R
3 be

the current desired pose for the object along Γ, and vo,d =
[vo,d,x, vo,d,y, ωo,d]

T ∈ R
3 be the associated desired velocity.

The desired body force F∗

o ∈ R
3 for the problem at hand is

computed as

Fo,d = KPO
(xo,d − xo) +KDO

(vo,d − vo) + fµ(vo,d),
(10)

where KP ,KD ∈ R
3×3 are positive-definite diagonal ma-

trices. The last term, fµ(vd) ∈ R
3, is a feed-forward com-

ponent for sliding friction compensation. This component is

computed as the wrench caused by the friction effect on the

object sliding with velocity vo,d. More specifically, fµ(vd) is

computed using the following ellipsoidal approximation for

the limit surface [30]

fµ(vo,d) =
µfmog

√

v2o,d,x + v2o,d,y + (γωo,d)2





vo,x
vo,y
γ2ω



 , (11)

where γ =
√

Jo/mo and µf > 0 is the friction coef-

ficient between the object and the floor. The body force

Fo,d computed in (10) is then used to online extrapolate

feasible contact forces to be applied to the object using the

optimization problem described below

min
Fc

1

2
||Fo,d −G(Θ∗)Fc||

2 (12)

s.t. Fc = F̂cΛ, (13)

Λ � 0, (14)

where Θ∗ ∈ R
nc is the optimal solution of (6). The

input velocity for the i-th robot is thus computed using the

following control law

ui = KPR
(p∗ci − pi) +KVR

RoG(Θ)Fci, (15)

where the first term provides proportional position feedback

for the robot since p∗ci is the desired optimal position for

the i-th robot, calculated using θ∗i , and pi is its current

position. The second addendum is a feed-forward compo-

nent instructing the robots to move in the direction of the

contact force needed to accomplish the task. The coefficients

KPR
,KV > 0 are gains of the control law to be opportunely

selected. The proposed online procedure uses the optimal

robots’ positioning Θ∗, which guarantees minimal contact

forces and tracking error in the ideal case while providing

robustness through position feedback terms.



V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present the evaluation method used

to assess the validity of the proposed strategy. In order

to properly evaluate the presented optimization and control

architecture, a series of simulations have been performed.

We propose three different manipulation tasks carried out by

some robots pushing an elliptical prism. For each trajectory,

the optimal positioning for each robot is computed using

the procedure presented in Section IV-A. The control law

proposed in Section IV-B is then used to track the task

trajectory by having the robots push onto the object after

they have reached the desired contact position. The validation

results will be detailed in Section V-C. Performed trajectories

are also shown in the accompanying video.

A. Simulation setup

The simulations have been performed using the Cop-

peliaSim physical simulation software [31]. Two or three

robots are placed in the simulated environment with an

elliptical object, as visualized in Fig. 4. The robots are

a modelled version of the e-puck [32] differential drive

mobile robot and are equipped with bumper rings with radius

ri = 5 cm, to provide a consistent contact surface. In order to

provide the single integrator behaviour described in (1), the

velocities for the wheels of each robot are obtained through

input-output feedback linearization [33]. The object’s mass

is set to mo = 0.3 kg while the inertia moment is set

to Jo = 0.0072 kg m2. The principal axes of the ellipse

are 0.5 m and 0.2 m, respectively. The friction coefficient

between the object and the floor is set to µf = 0.6 while

the robot-object coefficient is set to µ = 0.2. All the used

parameters are set according to the best available estimate

from the available real-world equipment described in the next

section. The purpose of testing the proposed controller in

a simulated environment is to verify its behaviour within

ideal conditions, while the real-world tests will assess its

robustness. In order to fully test our algorithm in simulation,

we would have to take into account uncertainties of the

parameters, e.g., the non-uniformity of the friction coefficient

across the environment or the floor not being perfectly flat.

The data required to compute the control laws is transmitted

through ROS communication channels to a MATLAB script

implementing the proposed methodology. The simulations

are performed on a laptop equipped with an Intel Core I7-

9750H and 16GB of RAM.

B. Experimental setup

The real-world experiment is performed on a honed con-

crete floor using the same robot employed in the simulation

environment, the e-puck differential drive robots, equipped

with a 3D printed bumper ring. The elliptical manipulandum

is obtained from a 5 mm plywood sheet. The principal axes

of the ellipse are 0.255 m and 0.175 m, respectively. The

global pose of the robots and the object is obtained using an

Optitrack™ motion capture system [34] composed of seven

Prime13 cameras. The information about the velocity of the

object, required to compute (10), is obtained by feeding the

Fig. 4. The robots and object in the CoppeliaSim simulation environment.

Fig. 5. The robots and object in the real-world environment.

pose information into an extended Kalman filter generating

the 3D linear and angular velocities of the object. The system

inside the experiment area is visualized in Fig. 5. All the

required data is sent to the PC, computing the control law

through ROS channels. The input for each robot is sent

through a Bluetooth connection to the robot’s control board.

C. Results

This section shows the results of the performed tests. First,

the results of two different simulated tasks are presented,

followed by a manipulation task performed in the real

environment. For each instant of each assigned trajectory,

the reference orientation for the object is kept equal to

the orientation of the global reference frame. Figure 6 top

graphs show the execution of a desired b-spline trajectory

(black dashed line), in the optimal robots’ configuration case

(left) and in the non-optimal case(right). The bottom left

graph shows the norm of the tracking error ep = po,d − po
while the bottom graph shows the contact force (fc1 , fc2 , fc3 )

norms along the performed trajectory. The continuous lines

are associated with results with the robots in the optimal

configuration Θ∗ = [5.112, 4.623, 3.569]T found solving

the problem in (6), while dashed lines are associated with

non-optimal robots’ configuration Θ = [7/4π, 3/2π, 5/4π]T,

which is also used as a starting point of the optimization.

As it is possible to note from the upper graph, the optimal

solution increases the performance of the tracking task show-

ing a lower and less varying error norm (continuous line)

compared to the non-optimal configuration (dashed line).

This holds especially in the second half of the trajectory,

where the non-optimized trajectory oscillates significantly
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Fig. 6. Upper graphs: desired (black dashed line) and executed trajectory (red) in the optimal robots’ configuration (left) and non-optimal robots’
configuration (right). Bottom left graph: norm of the tracking error ep = po,d − po. Bottom right graph: norm the contact forces fc1 , fc2 , fc3 along the
performed trajectory. Results of the optimal robots’ configuration are shown with continuous lines, non optimal robots’ configuration results are shown
with dashed lines.
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Fig. 7. Tracking performance along the first proposed test trajectory,
depicted as a dashed blue line. The orange line shows the motion of the
object during the simulated manipulation.

more than the optimized one. Analogous considerations

can be drawn by looking at the bottom graphs that show

the norm of the three contact forces fc1 , fc2 , fc3 for the

optimal configuration (continuous lines) and the non-optimal

configuration (dashed lines). In particular, it can be noted as

the contact forces are more uniformly distributed among the

robots in the optimal case, especially in the second half of the

trajectory. It is worth remarking that, although successful in

the considered case, non-optimal configurations can lead to

even larger tracking errors and contact forces norms, which
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Fig. 8. Comparison of the error between the requested body force and the
force that can be applied by the contacts.

may lead to task failures.

Figure 7 show the tracking performance of the same trajec-

tory using two robots. The orange line shows that the robots

can closely track the assigned trajectory. However, this is

achieved by sacrificing the orientation tracking performance

as the robots align the object to mostly push along the

motion direction. The optimal configuration of the robots is

Θ = [5.497, 3.734]T, and corresponds to both robots actively

pushing along the entire trajectory.

Figure 8 shows the performance difference between an
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Fig. 9. Tracking performance along the second proposed test trajectory
(dashed blue) using 3 robots in a simulated environment. The orange line
shows the motion of the object during the simulated manipulation.
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Fig. 10. Tracking performance along the third proposed test trajectory,
depicted as a dashed blue line. The orange line shows the motion of the
object during the simulated manipulation.

optimized configuration and a non-optimized one in terms of

the norm of the difference between the desired body force

Fo,d and the cumulative force applied at the contacts GFc,

obtained tracking the same b-spline trajectory. Even if the

magnitude of the error is relatively small in both cases, the

optimized configuration is more capable of quickly reducing

the error, therefore obtaining higher tracking performance. It

is crucial to notice how similar results are at the beginning

of the tracking. Both configurations can apply a cumulative

force directed in the object’s local y direction. The difference

in performance arises when the trajectory starts to turn,

indicating that the optimized configuration can apply a force

closer to the force requested by the task.

The second manipulation task is defined by the polynomial

trajectory visualized in Figure 9. In this three-robot scenario,

the optimal configuration is Θ = [5.1121, 4.6237, 3.5693]T.

The obtained performance matches the results of the previous

scenarios in which the orientation tracking is sacrificed.
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Fig. 11. Tracking performance along the third proposed test trajectory,
depicted as a dashed blue line. The orange line shows the motion of the
object during the real world manipulation.

The tracking performances depicted in Figure 10 and

Figure 11 show the manipulation of the same elliptical

object in simulation and the real environment, respectively.

The optimal contact configuration is defined as Θ =
[5.1868, 3.7398]T. In this two-robot scenario, it is possible

to note how in the optimal robot configuration, one robot

mostly pushes from below while the other aligns itself with

the diagonal portion of the trajectory. The great similarity

between the simulation and the real environment results

further validates the proposed approach.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we presented a task-oriented optimization

and control strategy for object pushing with mobile robots.

In particular, we proposed a method for calculating optimal

non-colliding contact points for a group of mobile robots

pushing an object that minimizes the trajectory tracking error

and the norm of contact forces to perform the task. Exploiting

the optimized contact configuration, a motion controller was

developed that exploits online computed contact forces in

feed-forward and position error feedback terms to realize

the desired trajectory tracking task. Results were validated

through simulations and experiments on a real robotic system

composed of multiple robots.

Although effective, our method still has several limitations

that must be addressed in future works. For instance, using

a local optimization method to calculate the contact points

might lead to sub-optimal results. A global optimization

method might produce better results at the expense of a

more significant computing time. A trade-off can be found

depending on the application. Besides, we aim to reformulate

the problem in (6) to find possibly time-varying contact

configurations and the corresponding pushing forces for a

given trajectory using the task-oriented approach presented

here. Finally, further experimental validations and tuning will

be carried out in the future, testing against other methods

from recent literature and possibly regulating pushing forces

at their optimal values by feedback.
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